47、已知公式 Pn = P0×(1 + i)^n,当 P0 = 2000,i = 0.0375,n = 10 时,求 Pn 的值。
将 $ P_0 = 2000 $,$ i = 0.0375 $,$ n = 10 $ 代入公式
$$ P_n = P_0 \times (1 + i)^n $$
可得
$$ P_n = 2000 \times (1 + 0.0375)^{10} $$
先计算括号内的值
$$ 1 + 0.0375 = 1.0375 $$
再计算
$$ 1.0375^{10} \approx 1.445 $$
最后
$$ 2000 \times 1.445 = 2890 $$
所以 $ P_n $ 的值约为
$$ 2890 $$
48、已知公式 n = (log(Pn) - log(P0)) / log(1 + i),当 Pn = 3000,P0 = 2000,i = 0.0375 时,求 n 的值
首先,分别计算公式中各项对数的值。
- 计算
log(Pn)
,即log(3000)
,可使用 Excel 计算,在 Excel 标准工具栏点击fx
,从函数类别中选 Math & Trig ,滚动函数名列表找到LOG10
并点击,在数字框输入3000
,Excel 返回约 3.47712 。 - 计算
log(P0)
,即log(2000)
,同样操作,在数字框输入2000
,Excel 返回约 3.30103 。 - 计算
log(1 + i)
,1 + i = 1 + 0.0375 = 1.0375
,在 Excel 中按上述方法,在数字框输入1.0375
,Excel 返回约 0.01599 。
然后,将上述值代入公式:
n = (log(Pn) - log(P0)) / log(1 + i)
可得:
n = (3.47712 - 3.30103) / 0.01599 ≈ 11
所以, n
的值约为 11 。
49、已知投资计划 A 的初始投资为 10000 元,年利率为 5%;计划 B 的初始投资为 12000 元,年利率为 4%。两个计划均按复利计算,且 20 年后计划 A 有额外收入 5000 元,费用 2000 元;计划 B 有额外收入 6000 元,费用 3000 元。比较两个计划在 20 年后的收益,判断哪个计划更盈利。
要比较两个投资计划 20 年后的收益,可分别使用 复利终值公式 计算两个计划 20 年后的资金总额,再结合收入和费用算出净收益。
复利终值公式为:
$$ F = P(1 + r)^n $$
其中:
- $ F $ 是终值
- $ P $ 是初始投资
- $ r $ 是利率
- $ n $ 是期数
计算出两个计划的净收益后,净收益高的计划更盈利。
50、假设某资产原值为1000000美元,残值为400000美元,使用年限为5年。使用以下方法重复计算该资产的折旧情况:a. 125%一般余额递减法;b. 150%一般余额递减法;c. 200%一般余额递减法。使用微软Excel的DDB函数或MATLAB的depgendb函数验证答案,并将结果制成表格进行比较,同时将直线折旧法(FDB)的结果包含在表格中。
已给出的数据表格中呈现了各方法的计算结果:
Period | FDB | 125% GDB | 150% GDB | 200% GDB |
---|---|---|---|---|
1 | $167,450 | $250,000 | $300,000 | $400,000 |
2 | 139,410 | 187,500 | 210,000 | 200,000 |
3 | 116,060 | 140,630 | 90,000 | 0 |
4 | 96,630 | 21,870 | ||
5 | 80,450 | |||
Total | $600,000 | $600,000 | $600,000 | $600,000 |
验证情况:
- 使用Excel的
DDB
函数计算,如=DDB(1000000,400000,5,1,2.00)
等; - 使用MATLAB的
depgendb
函数计算,如GDB200 = depgendb(1000000, 400000, 5, 2.00)
,返回结果与表格中200% GDB的数据相符。
51、一个辛迪加组织想购买一口油井。据估计,这口油井每年能产生一定净收入,持续若干年,且有一定残值。如果想从净收入中获得一定投资回报率,并建立一个有一定利率的偿债基金来收回投资,那么该辛迪加组织应该为这口油井支付多少钱?
可使用公式
$$C=\frac{R}{r+\frac{i}{(1 + i)^n - 1}}+\frac{L}{r\times\frac{(1 + i)^n - 1}{i}+1}$$
计算,其中