40、精密测量技术新进展:从干涉仪到微传感器与微球测量

精密测量技术新进展:从干涉仪到微传感器与微球测量

在当今的精密测量领域,不断有新的技术和方法涌现,以满足日益增长的高精度测量需求。本文将介绍几种前沿的测量技术,包括新型激光二极管干涉仪、接触式微热传感器以及基于回音壁模式的微球直径测量方法。

新型激光二极管干涉仪

一种低成本的新型微型激光二极管干涉仪已被成功开发。它属于迈克尔逊型干涉仪,通过四个光电探测器检测由相位编码模块相移的四个干涉电流信号。该干涉仪的波长补偿方法基于衍射原理,这也是大多数光谱仪所采用的原理。此外,它还配备了两个光学自准直仪,用于检测激光束的角度漂移和实时波长,其波长预测精度可达$10^{-6}$。这种激光二极管干涉仪可作为高精度平台中的线性反馈传感器。

  • 特点
    • 低成本、微型化设计,适用于多种应用场景。
    • 采用先进的波长补偿方法,提高测量精度。
    • 配备光学自准直仪,可实时监测激光束状态。
参数 详情
类型 迈克尔逊型干涉仪
波长补偿原理 衍射原理
波长预测精度 $10^{-6}$
应用
先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值