结构化文本表示:从数据格式到文本挖掘实践
在文本挖掘领域,将文本数据转换为结构化表示是进行有效分析和处理的关键步骤。本文将介绍几种常见的文本数据格式,以及如何在 R 语言中读取和处理这些数据,同时通过具体的示例展示文本挖掘的基本流程。
1. 常见文本数据格式
1.1 CLUTO 矩阵文件
 CLUTO 是一个用于聚类低维和高维数据集并分析各类簇特征的软件包。它包含多种聚类算法、相似度/距离函数、聚类准则函数等。CLUTO 使用的矩阵文件(  .mat)可以是稠密矩阵、稀疏矩阵或稠密/稀疏相似度图,用于表示待聚类的数据。 
 -   稠密矩阵   :第一行包含矩阵的行数和列数,其余每行代表一个实例,由空格分隔的浮点值组成,包括非零值。 
 -   稀疏矩阵   :第一行包含矩阵的行数、列数和非零值的数量,其余每行代表一个实例,由空格分隔的索引和对应非零值的对组成,索引从 1 开始。 
 -   稠密图格式   :第一行包含图的顶点数,其余行是一个 $n \times n$ 的邻接矩阵,其中 $n$ 是顶点数,位置 $i$ 和 $j$ 的元素是一个浮点值,表示图中第 $i$ 个和第 $j$ 个顶点的相似度。 
 -   稀疏图格式  *:第一行包含图的顶点数和边数,其余行是索引 - 值对形式的邻接矩阵,索引从 1 开始。 
此外,CLUTO 还接受 rlabel 文件(包含数据矩阵行的标签)、clabel 文件(包含数据矩阵列的标签)和 rclass 文件(包含数据矩阵行的类标签,用于外部簇评估)。
 
                       
                           
                         
                             
                             
                           
                           
                             超级会员免费看
超级会员免费看
                                         
                   订阅专栏 解锁全文
                订阅专栏 解锁全文
                 
             
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                  
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            