布隆过滤器

布隆过滤器是一种1970年提出的位数组和多个哈希函数结合的数据结构,用于判断元素是否存在集合中,具有O(1)的查询时间和空间效率。尽管存在误判可能性,但其在Google Bigtable、Squid缓存服务器等场景中得到广泛应用。优点是空间效率高,缺点是不可删除元素和存在误判率,但可以通过白名单进行误判补偿。适用于URL去重、垃圾邮件过滤等场景。
摘要由CSDN通过智能技术生成

11、布隆过滤器–>(时间复杂度为: O(1) )存在误判(不同的字符串可能转化为相同的整形)–>可以应用于任何数据类型(位图的扩展)

实现布隆过滤器需要位图和哈希函数 
布隆过滤器:
1、数据存在(不一定准确)-->可能因为冲突导致(可通过把地址存入磁盘解决)
2、数据不存在(一定准确)

布隆过滤器的目的是为了节约空间,所以确定站位个数也不能过多,但当位数少时冲突率就会增高(悖论)
布隆过滤器可以设置set(0->1),但不能 Reset(把1->0)(因为可能会影响别的数据)

原理

布隆过滤器(Bloom Filter): 是1970年由布隆(Burton Howard Bloom)提出的。它实际上是由一个很长的二进制向量和一系列随机映射函数组成,布隆过滤器用于检索一个元素是否在一个集合中。底层是利用哈希表来实现的,它可以通过一个Hash函数将一个元素映射成一个位阵列(Bit Array)中的一个点。这样一来,我们只要看看这个点是不是 1 就可以知道集合中有没有它了。这就是布隆过滤器的基本思想。
优点:空间效率和查询时间相比于其他数据结构有很大的优势
缺点:有一定的误识别率,删除困难

应用:

Google 著名的分布式数据库 Bigtable 使用了布隆过滤器来查找不存在的行或列,以减少磁盘查找的IO次数。
Squid 网页代理缓存服务器在cache digests中也使用了布隆过滤器。
Venti 文档存储系统也采用布隆过滤器来检测先前存储的数据。
SPIN 模型检测器也使用布隆过滤器在大规模验证问题时跟踪可达状态空间。
Google Chrome浏览器使用了布隆过滤器加速安全浏览服务。
Bloom Filter 是一种空间效率很高的随机数据结构,Bloom filter 可以看做是对 bit-map 的扩展, 它的原理是:
当一个元素被加入集合时,通过 K 个 Hash 函数将这个元素映射成一个位阵列(Bit array)中的 K 个点,把它们置为 1。检索时,我们只要看看这些点是不是都是 1 就(大约)知道集合中有没有它了:

* 如果这些点有任何一个 0,则被检索元素一定不在;
* 如果都是 1,则被检索元素很可能在。

优缺点

优点

它的优点是空间效率和查询时间都远远超过一般的算法,布隆过滤器存储空间和插入 / 查询时间都是常数O(k)–>即为O(1)。另外, 散列函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。

缺点

但是布隆过滤器的缺点和优点一样明显。误算率是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣。
(误判补救方法是:再建立一个小的白名单,存储那些可能被误判的信息。)
另外,一般情况下不能从布隆过滤器中删除元素. 我们很容易想到把位数组变成整数数组,每插入一个元素相应的计数器加 1, 这样删除元素时将计数器减掉就可以了。然而要保证安全地删除元素并非如此简单。首先我们必须保证删除的元素的确在布隆过滤器里面. 这一点单凭这个过滤器是无法保证的。另外计数器回绕也会造成问题。

应用

布隆过滤器在很多场合能发挥很好的效果,比如:网页URL的去重,垃圾邮件的判别,集合重复元素的判别,查询加速(比如基于key-value的存储系统)等,下面举几个例子:
url去重
A,B 两个文件,各存放 50 亿条 URL,每条 URL 占用 64 字节,内存限制是 4G,让你找出 A,B 文件共同的 URL。如果是三个乃至 n 个文件呢?
分析 :如果允许有一定的错误率,可以使用 Bloom filter,4G 内存大概可以表示 340 亿 bit。将其中一个文件中的 url 使用 Bloom filter 映射为这 340 亿 bit,然后挨个读取另外一个文件的 url,检查是否与 Bloom filter,如果是,那么该 url 应该是共同的 url(注意会有一定的错误率)。”

垃圾邮件

假定我们存储一亿个电子邮件地址,我们先建立一个十六亿二进制(比特),即两亿字节的向量,然后将这十六亿个二进制全部设置为零。对于每一个电子邮件地址 X,我们用八个不同的随机数产生器(F1,F2, …,F8) 产生八个信息指纹(f1, f2, …, f8)。再用一个随机数产生器 G 把这八个信息指纹映射到 1 到十六亿中的八个自然数 g1, g2, …,g8。现在我们把这八个位置的二进制全部设置为一。当我们对这一亿个 email 地址都进行这样的处理后。一个针对这些 email 地址的布隆过滤器就建成了。

代码块

#include<iostream>
using namespace std;

#pragma once  

#include"bitMap.h"  

size_t BKDRHash(const char *str)
{
    unsigned int seed = 131; // 31 131 1313 13131 131313   
    unsigned int hash = 0;
    while (*str)
    {
        hash = hash * seed + (*str++);
    }

    return (hash & 0x7FFFFFFF);
}

size_t SDBMHash(const char *str)
{
    register size_t hash = 0;
    while (size_t ch = (size_t)*str++)
    {
        hash = 65599 * hash + ch;
        //hash = (size_t)ch + (hash << 6) + (hash << 16) - hash;     
    }
    return hash;
}

size_t RSHash(const char *str)
{
    register size_t hash = 0;
    size_t magic = 63689;
    while (size_t ch = (size_t)*str++)
    {
        hash = hash * magic + ch;
        magic *= 378551;
    }
    return hash;
}

size_t APHash(const char *str)
{
    register size_t hash = 0;
    size_t ch;
    for (long i = 0; ch = (size_t)*str++; i++)
    {
        if ((i & 1) == 0)
        {
            hash ^= ((hash << 7) ^ ch ^ (hash >> 3));
        }
        else
        {
            hash ^= (~((hash << 11) ^ ch ^ (hash >> 5)));
        }
    }
    return hash;
}

size_t JSHash(const char *str)
{
    if (!*str)
        return 0;

    register size_t hash = 1315423911;
    while (size_t ch = (size_t)*str++)
    {
        hash ^= ((hash << 5) + ch + (hash >> 2));
    }
    return hash;
}

template<class K>
struct __HashFunc1
{
    size_t operator()(const K& key)
    {
        return BKDRHash(key.c_str());
    }
};

template<class K>
struct __HashFunc2
{
    size_t operator()(const K& key)
    {
        return SDBMHash(key.c_str());
    }
};

template<class K>
struct __HashFunc3
{
    size_t operator()(const K& key)
    {
        return RSHash(key.c_str());
    }
};

template<class K>
struct __HashFunc4
{
    size_t operator()(const K& key)
    {
        return APHash(key.c_str());
    }
};

template<class K>
struct __HashFunc5
{
    size_t operator()(const K& key)
    {
        return JSHash(key.c_str());
    }
};

template<class K = string,
class HashFunc1 = __HashFunc1<K>,
class HashFunc2 = __HashFunc2<K>,
class HashFunc3 = __HashFunc3<K>,
class HashFunc4 = __HashFunc4<K>,
class HashFunc5 = __HashFunc5<K >>
class BloomFilter
{
public:
    BloomFilter(size_t size)
    {
        _capacity = _GetNextPrime(size);
        _bitmap.Resize(_capacity);
    }

    void Set(const K& key)
    {
        size_t index1 = HashFunc1()(key);
        size_t index2 = HashFunc2()(key);
        size_t index3 = HashFunc3()(key);
        size_t index4 = HashFunc4()(key);
        size_t index5 = HashFunc5()(key);

        _bitmap.Set(index1%_capacity);
        _bitmap.Set(index2%_capacity);
        _bitmap.Set(index3%_capacity);
        _bitmap.Set(index4%_capacity);
        _bitmap.Set(index5%_capacity);
    }

    bool IsIn(const K& key)
    {
        size_t index1 = HashFunc1()(key);
        if (!_bitmap.Test(index1%_capacity))
        {
            return false;
        }
        size_t index2 = HashFunc2()(key);
        if (!_bitmap.Test(index2%_capacity))
        {
            return false;
        }
        size_t index3 = HashFunc3()(key);
        if (!_bitmap.Test(index3%_capacity))
        {
            return false;
        }
        size_t index4 = HashFunc4()(key);
        if (!_bitmap.Test(index4%_capacity))
        {
            return false;
        }
        size_t index5 = HashFunc5()(key);
        if (!_bitmap.Test(index5%_capacity))
        {
            return false;
        }

        return true;
    }

protected:

    unsigned long _GetNextPrime(unsigned long num)
    {
        const int _PrimeSize = 28;
        static const unsigned long _PrimeList[_PrimeSize] =
        {
            53ul, 97ul, 193ul, 389ul, 769ul,
            1543ul, 3079ul, 6151ul, 12289ul, 24593ul,
            49157ul, 98317ul, 196613ul, 393241ul, 786433ul,
            1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul,
            50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul,
            1610612741ul, 3221225473ul, 4294967291ul
        };
        size_t pos = 0;
        while (pos < _PrimeSize)
        {
            if (_PrimeList[pos] > num)
            {
                break;
            }
            ++pos;
        }
        return _PrimeList[pos];
    }

private:
    BitMap _bitmap;
    size_t _capacity;
};

void BloomFilterTest()
{
    BloomFilter<> bf(30);
    bf.Set("布隆过滤器");
    bf.Set("AAAAAAAAAAA");
    bf.Set("qqqqqqqqq");

    cout << bf.IsIn("布隆过滤器") << endl;
    cout << bf.IsIn("ww") << endl;
}

[位图的实现]http://blog.csdn.net/mm_hh/article/details/77502857

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值