- 博客(188)
- 资源 (1)
- 收藏
- 关注
原创 大模型自一致性
大模型自一致性是指通过设计多个不同角度的提问方式(prompt),让大模型生成多组答案,然后采用投票机制选择出现频率最高的答案作为最终结果。这种方法类似"少数服从多数"的决策原则,能提高回答的可靠性,减少模型输出的随机性错误。
2025-12-31 01:20:44
372
原创 vmware虚拟机ens33拿不到ip,已经开启dhcp了
摘要 在CentOS虚拟机迁移过程中,直接复制VMX文件会导致网络适配器MAC地址冲突。解决方法是在VMware中为新虚拟机生成新的MAC地址:选中虚拟机→设置→网络适配器→高级→MAC地址,点击"生成"按钮获取新地址。这样就能通过DHCP重新获取IP地址,解决ens33网卡无法获取IP的问题。该方法适用于虚拟机克隆或迁移时的网络配置问题。
2025-12-21 22:19:28
215
原创 ms-swift训练的感悟2
query: apos:[A]neg:[B,C]1x(2+1) =3 //待入官方公式,对上了因为他最后都是point2point的,可以看出来输入一个query和多个docs 请求reranker的时候还是通过推理 query-doc 来解决的至于listwise ,也只是拿到point2point的loss后再编排而已,怎么编排让point2point的效果更好。
2025-12-06 19:41:39
902
原创 使用ms-swift的一些感悟
传统 Reranker- 最基本的方法,适用于一般的排序任务- 利用生成能力,更适合复杂语义理解- 优化整个排序列表,提升整体排序质量- 结合前两者优势,提供最佳性能在实际应用中,可以根据数据特点和性能要求选择合适的训练方法。
2025-11-27 02:40:41
259
1
原创 mongoschema定义错误,
这篇文章解释了在Mongoose Schema中使用枚举类型时的一个常见问题。当使用Object.values(CalculateMethodEnum)作为枚举值时,由于TypeScript枚举会同时包含数值和字符串键,导致输出数组混合了数值和字符串值[0, 1, "mean", "median"],这与Schema中定义的Number类型冲突。正确的做法是使用单独定义的枚举值数组CaculateMethodValues,而不是直接使用Object.values()。
2025-09-04 21:32:58
129
原创 docker回炉重造
知识点1: 这个地方域名fastgpt-minio能够访问,是因为docker compose会为每个服务名启动一个DNS,最近在学习fastgpt项目,其中使用docker compose启服务。docker compose文件。如果想改变依赖的镜像源。
2025-08-19 20:33:08
279
1
原创 github下载项目提速
添加完上面配置之后,需要在新窗口重新写git clone,旧窗口可能配置还没生效。使用了v2rayn之后,下载git仓库还是很慢?
2025-08-18 11:24:57
250
原创 你领导给你开通了root权限,但是你不会用?
摘要:sudo su用于将当前用户权限提升至超级用户,无需root密码。适用于管理员授予普通用户sudo权限但不提供root账户的情况。执行sudo su时只需输入当前用户密码,即可获得root权限,解决了普通用户频繁使用sudo前缀的问题,同时保障系统安全(领导无需分享root密码)。该命令在管理员信任用户但需限制root直接访问的场景中尤为实用。
2025-06-28 01:43:20
112
原创 三十年河东,三十年河西
重新出发了,后端->大模型微调->AIGC。最怕自己能力不足,还在自我安慰。顶峰相见了,以后没得🐟摸了。你需要补不足,补短板。
2025-06-17 00:18:32
142
原创 一个好用的快速学习的网站
Thetawave.ai 是一个创新的工具,支持将视频链接快速转换为笔记,特别适合时间有限的用户。通过该平台,用户可以轻松总结B站等平台的教学视频内容,提高学习效率。每天提供免费使用额度,方便用户无需额外成本即可体验其功能。访问链接 https://thetawave.ai/auth/signup?ref=ALCNQZ 注册使用,立即体验这一便捷的学习辅助工具。
2025-05-10 14:48:57
6434
原创 【无标题】
model_args.compute_dtype (比如设置为 torch.bfloat16 或 torch.float16) 控制了 模型的计算精度,包括前向传播、损失计算等,梯度等。对于 优化器 的精度,通常不直接受到影响。优化器(如 Adam、AdamW)的参数更新依然使用 float32 精度。
2025-04-28 02:02:59
246
原创 vllm并发太大,导致服务奔溃
GPU KV-cache usage: 接近100%的话就会导致推理失败,注意 KV-cache usage不能过高。Prefix cache usage: 加速推理的,为了尽可能命中前缀缓存,应该尽量将公共的输入部分前置。
2025-03-26 10:19:51
956
1
原创 牛客读取入参
nextByte()、nextShort()、nextLong():读取其他数值类型。hasNextDouble():检查下一个输入项是否为浮点数。nextLine():读取整行(包括空格,直到换行符)。hasNextInt():检查下一个输入项是否为整数。next():读取下一个单词(以空白字符为分隔符)。hasNextLine():检查是否还有下一行。hasNext():检查是否还有下一个输入项。nextDouble():读取下一个浮点数。nextInt():读取下一个整数。
2025-03-25 21:30:34
183
原创 autodl下载huggingface模型使用镜像加速
model-00004-of-00004.safetensors 是你要下载的文件,灵活变动,参考下图内容。FreedomIntelligence/HuatuoGPT-o1-7B 这部分参考下图红框框的内容灵活变动。
2025-01-22 10:38:27
578
原创 pandas操作
不可变对象(如整数、浮点数、字符串、元组等):由于不可变对象无法修改,函数内部对该对象的任何操作都会创建一个新的对象,原始对象不受影响。传递的是对象的引用:当你将一个变量作为参数传递给函数时,实际上传递的是该变量所指向的对象的引用,而不是对象本身或其副本。可变对象(如列表、字典、集合等):函数内部对对象的修改会直接影响原始对象,因为它们共享同一个引用。
2024-12-11 11:55:11
235
原创 csv文件处理 多个字段拼接到同一个字段错误
这种有问题,df[‘b’]或df[‘c’] 其中有一个取值为nan最后得到的结果就是nan,这种明显不符合要求。df[‘a’] = df[‘b’] + ‘字段c’ + df[‘c’]
2024-12-10 16:12:42
160
原创 当别人没用用json.dumps保存对象数据的时候,该怎么重新将这些字符串识别为对象
当别人没用用json.dumps保存对象数据的时候,该怎么重新将这些字符串识别为对象。可以使用 ast 参考代码如下。
2024-12-04 11:49:10
136
原创 生产问题记录-nebula
这周出了一单生产问题,测试环境系统正常运行,但是上线生产之后,系统无数据返回看了生产日志初步定位到是图谱结果没返回执行图谱查询语句报错执行查询的nebula用户无权限。
2024-11-18 11:29:22
361
原创 系统学习领域驱动设计-感悟-高尚名词篇
高尚名词高尚名词通俗意思知识消化开发代码过程中的业务理解持续学习团队角度,持续沉淀文档沉淀业务理解,教会更多的新人,不让某些员工掌握知识壁垒
2024-11-08 09:05:38
253
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅