- 博客(3)
- 收藏
- 关注
原创 关于图像去雨RESCAN的理解
之前的工作只是将上一阶段的输出图像作为当前阶段的输入,而没有考虑这些阶段之间的特征联系。我们在RNN建立了一个具有记忆单元的网络(31),以便更好地利用前一阶段的信息,并在后一阶段指导特征学习。对于特征图,我们把它们的每个通道看作是一个雨带层的嵌入。因为有不同的雨层重叠,不可能通过一步就简单的将所有的雨层去除掉,因此设计递归网络逐步去除。为了明确地为每个图像导入每个网络层上的权重,我们用SE块,它为每个项目的每个通道计算归一化的阿尔法值。图像去雨指的是从受雨滴影响的图像中去除雨滴,以便获得更清晰的图像。
2025-05-11 14:10:54
431
原创 图像感知压缩(学习笔记)
其中,fn表示图像阵列中第n个位置的像素值,pm个第条射线上的投影值,ωmn表示第n个像素对第m条射线的贡献率,所有ωmn组成一个MxN的矩阵W,即为系统矩阵。检验是否满足收敛条件或符合迭代停止条件,否则将得到的图像估计作为输入,重复步骤(1)、(2)、(3)、(4),直至满足条件,输出重建图像矩阵。通过在图像f生成测量投影数据p这一事实的约束下,最小化图像的L1范数来实现。其中,f为待求的未知图像阵列,Ψ为某种稀疏变换(使图像f经变换后是稀疏的),A为M*N的系统矩阵,且M<<N,p为投影数据。
2025-04-20 19:15:25
666
原创 人体2D姿态评估(OpenPose)
类似地,手部边界框提案是使用手臂关键点生成的。OpenPose 系统作为该方法的实现,具备实时、开源、多平台运行的特点,成为了一种高效、准确的姿态估计工具。是指基于图像处理、机器学习和深度学习等方法,对给定的图像序列进行人体姿态检测,并给出人体模型的热点图,主要针对单帧图像中人体位姿的估计,并不考虑连续时间下位姿变化形成的动作含义,将人体姿态估计定义为人体关键点的定位问题。同时推断这些自底向 上的检测和关联表示编码了足够的全局上下文,使得贪婪解析能够实现高质量的结 果,同时计算成本仅为传统方法的一小部分。
2025-03-19 20:06:12
423
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人