- 博客(2)
- 收藏
- 关注
翻译 论文笔记:SRAE可恢复对抗样本 IEEE TCSVT 2022
恶意智能算法通过检测和分析上传到社交网络平台的照片,极大地威胁了社交用户隐私的安全。对抗性攻击对dnn带来的破坏引发了对抗样本作为社交网络隐私安全的一种新的保护机制。但是,现有的对抗性例子并没有作为一种有效的保护机制的可恢复性。为了解决这个问题,我们提出了一个可恢复的生成对抗网络来生成自恢复的对抗样本。该方法将对抗性攻击和恢复建模为统一的任务,可以减少恢复样本的误差,同时最大化攻击能力,从而提高对抗样本的可恢复性。为了进一步提高这些样本的可恢复性,我们利用一个降维器来优化对抗性扰动的分布。实验结果
2022-11-01 16:29:19
1714
2
原创 AMT-GAN 人脸对抗样本 CVPR2022
·最近,一些研究采用了对抗样本来保护照片不被未经授权的人脸识别系统识别。·然而,现有的生成敌对人脸图像的方法存在许多局限性,如视觉困难、白盒设置、可转移性弱,难以应用于保护人脸隐私。·在本文中,我们提出了adversarial makeup transfer GAN(AMT-GAN),这是一种新的人脸保护方法,旨在构建对抗的人脸图像,同时保持更强的黑盒可转移性和更好的视觉质量。AMT-GAN利用GAN用参考人脸的转移的妆容,合成对抗人脸图像。·特别地,我们引入了一个新的正则化模块和一个联合训
2022-09-05 16:09:11
4259
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人