[用Deep Lake构建AI应用:从数据存储到实时查询]

用Deep Lake构建AI应用:从数据存储到实时查询

引言

在人工智能的快速发展中,如何有效地存储和查询多模态数据成为了关键问题。Deep Lake作为一款专门为AI应用设计的数据库,提供了强大的功能,可以存储和查询向量、图像、文本、视频等多种数据类型。本篇文章将深入探讨如何使用Deep Lake构建AI应用,包括创建向量存储和实现自查询检索器。

主要内容

创建Deep Lake向量存储

首先,我们需要创建一个Deep Lake向量存储,并用一些数据初始化它。以下是一个使用电影摘要的示例数据集。请确保安装必要的库:

%pip install --upgrade --quiet lark libdeeplake # 安装依赖库

为了使用OpenAI的嵌入,我们需要获取OpenAI API Key。

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") # 设置OpenAI API Key
os.environ["ACTIVELOOP_TOKEN"] = getpass.getpass("Activeloop token:") # 设置Activeloop token

接下来,使用DeepLake和OpenAIEmbeddings创建向量存储:

from langchain_community.vectorstores import DeepLake
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings()

docs = [
    Document(
        page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
        metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"},
    ),
    # ... 其他文档
]

username_or_org = "<USERNAME_OR_ORG>"

vectorstore = DeepLake.from_documents(
    docs,
    embeddings,
    dataset_path=f"hub://{username_or_org}/self_query", # 使用API代理服务提高访问稳定性
    overwrite=True,
)

创建自查询检索器

创建自查询检索器需要提供文档的元数据字段和文档内容的简要描述。

from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI

metadata_field_info = [
    AttributeInfo(
        name="genre",
        description="The genre of the movie",
        type="string or list[string]",
    ),
    # ... 其他属性信息
]

document_content_description = "Brief summary of a movie"

llm = OpenAI(temperature=0)

retriever = SelfQueryRetriever.from_llm(
    llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)

代码示例

以下是使用检索器进行查询的示例代码:

# 示例:查询恐龙相关的电影
results = retriever.invoke("What are some movies about dinosaurs")

for doc in results:
    print(doc.page_content, doc.metadata)

常见问题和解决方案

  • 安装错误: 如果在安装libdeeplake时出现错误,请尝试手动安装并重启笔记本。

  • API访问问题: 由于某些地区的网络限制,建议使用API代理服务以提高访问稳定性。

总结和进一步学习资源

在本篇文章中,我们探索了如何使用Deep Lake数据库和LangChain构建一个用于AI应用的数据存储和检索系统。通过这种方法,可以高效地实现复杂查询并处理多模态数据。

要深入学习,您可以参考以下资源:

参考资料

  1. Deep Lake API Reference
  2. LangChain Documentation

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值