Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1’s in their binary representation and return them as an array.
Example:
For num = 5 you should return [0,1,1,2,1,2].
Follow up:
It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
Space complexity should be O(n).
Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
题意:给定一个非负整数num,将[0,num]内所有的整数的二进制数的bit1个数计算出来,存在一个数组中返回。
题解:显然首先想到的是暴力求解方法,从0到num,逐个mod2求取1的数位如下代码所示:
public class Solution {
public int[] countBits(int num) {
/***brute solution***/
int[] res=new int[num+1];
for(int i=0;i<res.length;i++)
{
int temp=i;
int bits=0;
while(temp!=0)
{
if(temp%2==1) bits++;
temp/=2;
}
res[i]=bits;
}
return res;
}
}
但是对于follow up 里的要求显然是不满足的。这里我们考虑求取 7的bit 1 个数:
7%2=1, bits++;
7/2=3
3%2=1,bits++
这里发现对7mod2后,其子问题刚好是res[3]的结果!!即res[7]=res[3]+1!因此有如下递推关系式:
res[n]=res[n/2],n%2=0
res[n]=res[n/2]+1;n%2=1
用动态规划的说法,很多数都是求解公共子问题,代码如下:
public class Solution {
public int[] countBits(int num) {
/****DP solution***/
int[] res=new int[num+1];
res[0]=0;
if(num==0) return res;
res[1]=1;
for(int i=2;i<num+1;i++)
{
if(i%2==0) res[i]=res[i/2];
else res[i]=res[i/2]+1;
}
return res;
}
}