- 博客(88)
- 收藏
- 关注
原创 毕业生求职招聘网站的设计与实现(JAVA源码+文档)(SpringBoot+VUE+Mysql)
由SpringBoot+VUE+Mysql实现求职招聘网站的设计主要分为3类角色:毕业生(用户)、企业(用户)、管理员求职招聘网站的功能模块是用户在使用本网站时,不同用户所具有的功能,不同的角色所能够管理的模块也是不尽相同。
2023-07-25 21:48:19
1501
6
原创 基于Axure 8课程设计-前端页面设计-漫画APP界面/UI设计(免费分享.rp文件学习)
这次的课程设计主要是UI设计,基于Axure我设计了一个类似动漫之家的一个设计界面,以下是效果图:点击头像可以进行变更
2022-05-08 11:14:01
1552
6
原创 python安装第三方库安装/Vscode运行python问题(如何使用清华源)
首先我们使用 win+R 打开运行窗口输入cmd如果使用 pygamepip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ Python库名我打算使用pdfminer库我把代码放到VScode里面运行提示:问题就是VS code没有第三方库的环境所以我们进行设置,打开设置搜索:python.analysis.extraPaths把我们本地库的地址添加进去大功告成!...
2022-04-30 23:58:20
4484
2
原创 Python/选课列表程序(附Python代码)
编写选课程序。左侧列表框显示学生可以选择的课程名称,右侧列表框显示学生已经选择的课程名通过四个按钮可以使两个列表框中移动数据项。代码:from tkinter import *window=Tk()def callbutton1(): for i in theLB.curselection(): theRB.insert(0,theLB.get(i)) theLB.delete(i) def callbutton2(): for
2020-11-09 22:59:09
2967
原创 Bad owner or permissions on /**/.ssh/config
运行ssh的传输命令scp -P 1922 jhx@**:/home/**.zip /home。然后再执行命令,输入目标主机密码,成功下载!这个只需要给个权限就可以了。
2025-10-27 16:59:59
241
原创 cannot import name ‘HubDatasetModuleFactoryWithoutScript‘ from ‘datasets.load‘
项目运行报错及问题解决方法
2025-10-16 09:13:32
1993
原创 我的创作纪念日
最初决定成为创作者,源于一次 “不想让经验白白流失” 的朴素想法。起初,只是我想要把自己写的代码思路一来作为保存,二来是分享给正在看这个题目的同学们,因为CSDN我们在天涯海角都能进行经验交流,而这些解决问题的思路、避坑的细节,或许能帮到其他正在被同类问题困扰的人。于是,我开始在技术社区写下第一篇文章,没想到文章发布后,收到赞和评论,还有人私信交流更优的代码写法 —— 这种 “分享经验能切实帮到别人” 的反馈,让我第一次感受到创作的价值。后来,创作慢慢从 “项目经验复盘” 延伸到日常学习记录。
2025-10-03 20:40:31
299
转载 qt.qpa.plugin: Could not load the Qt platform plugin “xcb“ in ““ even though it was found.
错误描述在 Ubuntu 24 的 Conda 虚拟环境中运行 PyQt5 应用时,可能会出现以下错误: 该错误表明 Qt 无法初始化其平台插件,特别是“xcb”插件。xcb 是 Qt 在 Linux 系统中与 X Window System 进行交互的重要组件。没有它,Qt 应用程序将无法在 Linux 环境中启动。错误分析:在 Conda 虚拟环境中运行 PyQt5 应用时,有时会出现 PyQt5 和 OpenCV 的版本不兼容的情况。尤其是通过 pip 安装的 PyQt5 和 OpenCV 包
2025-09-19 17:36:56
521
原创 在使用ffmpeg与音转文模型时,会报错音转文stack expects a non-empty Tensor List
项目Ffmpeg中所遇到的问题以及解决方案。
2025-09-08 18:07:10
545
原创 Python程序使用了ffmpeg,结束程序后,文件夹中仍然生成音频、视频文件
FFmpeg在Linux平台下开发,但它同样也可以在其它操作系统环境中编译运行,包括Windows、Mac OS X等。许多FFmpeg的开发人员都来自Mplay项目,而且当前FFmpeg也是放在MPlayer项目组的服务器上。项目的名称来自MPEG视频编码标准,前面的"FF"代表"Fast Forward"。它包含了非常先进的音频/视频编解码库libavcodec,为了保证高可移植性和编解码质量,libavcodec里很多code都是从头开发的。根据pid定位到所运行的ffmpeg进程,
2025-09-08 11:02:30
325
原创 算法学习8.25
为了有效地跟踪随时间变化的物体,必须为每个检测到的物体分配一个唯一的 ID。这可确保跨帧的一致识别和跟踪。为了实现这一点,我们引入了ObjectTracker类,它可以处理以下关键任务。保持一致性:通过将 ID 与后续帧中检测到的对象关联起来,确保分配给每个对象的 ID 在各个帧之间保持一致。状态管理:更新每个跟踪对象的状态,并删除不再主动跟踪的对象以保持效率和准确性。分配 ID:为每个检测到的对象分配一个唯一的 ID。
2025-08-25 16:28:34
153
原创 Git项目报错git@gitlab.com: Permission denied (publickey).【已解决】
总结gitlab拉取项目代码出现错误及解决方法
2025-08-21 14:46:58
714
原创 实现CV模型与Dify平台结合提供专业领域建议
CV与Dify平台相互融合的Demo,CV进行图像检测,Dify给出大模型的输出内容,之后通过网页端进行调用两者接口。
2025-08-06 17:44:05
246
原创 【本机已实现】使用Mac部署Triton服务,使用perf_analyzer、model_analyzer
使用Mac系统部署Triton推理服务,本机已实现
2025-06-20 18:13:07
1320
原创 NMS非极大值抑制(看完这一篇就够了)
这项技术不仅在YOLO模型中大放异彩,并且是在面试中高频题,下面就开始对NMS技术的讲解在YOLO模型中NMS会删除同一目标的冗余边框,从而留下目标相对完美的检测边框。除此之外,还可以通过限定置信度来决定保留的边框。
2025-05-23 22:46:16
341
原创 9.10-9.11-AutoAWQ代码解析
3、查看quantize.py代码,修改model_path部分,修改为想要量化的模型。4、量化部分代码解析。本篇只针对AutoAWQ的量化代码进行解析。2、git clone后,下载AutoAWQ所需环境。1、首先要去官网下载源码。
2024-09-10 14:53:25
980
原创 9.2~9.9-模型量化学习内容
量化是将模型浮点数变为定点数运行的过程。基本概念 :模型量化可以减少模型尺寸,进而减少在推理时的内存消耗,并且在一些低精度运算较快的处理器上可以增加推理速度。常见方法:工业界目前最常用的是8比特,低于8比特的量化被称为低比特量化。1比特是模型压缩的极限,可以将模型压缩为1/32。
2024-09-02 12:14:06
517
原创 算法学习-2024.8.16
一个深度学习模型,在没有优化的情况下,比如一个卷积层、一个偏置层和一个reload层,这三层是需要调用三次cuDNN对应的API,但实际上这三层的实现完全是可以合并到一起的,TensorRT会对一些可以合并网络进行合并。TensorRT对于网络结构进行了重构,把一些能够合并的运算合并在了一起,针对GPU的特性做了优化。深度学习网络在训练时,通常使用 32 位或 16 位数据。TensorRT则在网络的。推理时选用不这么高的精度,达到加速推断的目的。
2024-08-16 13:47:49
192
原创 2024.8.14-算法学习(原创+转载)
解码过程中,某些token的解码相对容易,某些token的解码则很困难。因此,简单的token生成可以交给小型模型处理,而困难的token则交给大型模型处理。这里的小型模型可以采用与原始模型相同的结构,但参数更少,或者干脆使用n-gram模型。小型模型不仅计算量较小,更重要的是减少了内存访问的需求。投机采样(Speculative Decoding)使用两个模型:一个是原始目标模型,另一个是比原始模型小得多的近似模型。核心:近似模型用于进行自回归串行采样,而大型模型则用于评估采样结果。
2024-08-14 14:07:19
514
原创 【已解决】在进行模型量化推理的过程中遇到的错误以及解决方法
修改子目录下的vllm文件夹名字,分析原因可能是由于导包的问题,导致无法引入正确的vllm环境。尝试众多解决方法之后,包括重新安装。
2024-08-13 16:45:44
1758
原创 在Linux服务器上部署LLM,使用gradio遇到Could not create share link. Missing file:frpc_linux_amd64_v0.2
大规模语言模型(Large Language Models,LLM),也称大规模语言模型或大型语言模型,是一种由包含数百亿以上参数的深度神经网络构建的语言模型,使用自监督学习方法通过大量无标注文本进行训练。自2018 年以来,Google、OpenAI、Meta、百度、华为等公司和研究机构都相继发布了包括BERT,GPT 等在内多种模型,并在几乎所有自然语言处理任务中都表现出色。①首先下载frpc_linux_amd64。之后再使用gradio进行网页端显示。③移动到本虚拟环境的指定目录下。
2024-07-02 15:49:09
1094
Focal and Global Knowledge Distillation for Detectors聚焦蒸馏与全局蒸馏在目
2023-06-24
考研图表-表格-柱状图-饼状图-折线图通用作文模板
2023-03-24
PASCAL-VOC2012数据集.txt
2023-02-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅