机器学习算法疗程(BP)

转自:http://www.cnblogs.com/daniel-D/archive/2013/06/03/3116278.html

0. 前言

之前上模式识别课程的时候,老师也讲过 MLP 的 BP 算法, 但是 ppt 过得太快,只有一个大概印象。后来课下自己也尝试看了一下 stanford deep learning 的 wiki, 还是感觉似懂非懂,不能形成一个直观的思路。趁着这个机会,我再次 revisit 一下。本文旨在说明对 BP 算法的直观印象,以便迅速写出代码,具体偏理论的链式法则可以参考我的下一篇博客(都是图片,没有公式)。

1. LMS 算法

故事可以从线性 model 说起(顺带复习一下)~在线性 model 里面,常见的有感知机学习算法、 LMS 算法等。感知机算法的损失函数是误分类点到 Target 平面的总距离,直观解释如下:当一个实例点被误分,则调整 w, b 的值,使得分离超平面向该误分类点的一侧移动,以减少该误分类点与超平面的距离,在 Bishop 的 PRML一书中,有一个非常优雅的图展现了这个过程。但是了解了 MLP 的 BP 算法之后,感觉这个算法与 LMS 有点相通之处。虽然从名字上 MLP 叫做多层感知机,感知机算法是单层感知机。

LMS (Least mean squares) 算法介绍比较好的资料是 Andrew Ng cs229 的 Lecture Notes。假设我们的线性 model 是这样的:

在上面这个模型中,用公式可以表达成:

id="iframe_0.717360519973856" src="https://www.cnblogs.com/show-blocking-image.aspx?url=http%3A%2F%2Flatex.codecogs.com%2Fgif.latex%3Fh_%5Ctheta%2520%7B(x)%7D%2520%3D%2520%5Ctheta%2520%5ETx%3D%5Ctheta%2520_%7B1%7Dx_1%2B%5Ctheta%2520_2x_2%2520%2B%5Ctheta%2520_0&maxWidth=655&origin=http://www.cnblogs.com&iframeId=iframe_0.717360519973856" frameborder="0" scrolling="no" height="20" style="border-style: none; border-width: initial; width: 655px;">

如何判断模型的好坏呢?损失函数定义为输出值 h(x) 与目标值 y 之间的“二乘”:

对偏导进行求解,可以得到:

如果要利用 gradient descent 的方法找到一个好的模型,即一个合适的 theta 向量,迭代的公式为:

所以,对于一个第 i 个单独的训练样本来说,我们的第 j 个权重更新公式是:

id="iframe_0.48066091361721597" src="https://www.cnblogs.com/show-blocking-image.aspx?url=http%3A%2F%2Flatex.codecogs.com%2Fgif.latex%3F%5Ctheta%2520_j%3D%5Ctheta%2520_j%2B%5Calpha%2520(y%5E%7B(i)%7D%2520-%2520h_%5Ctheta%2520(x%5E%7B(i)%7D))%2520x_j%5E%7Bi%7D&maxWidth=655&origin=http://www.cnblogs.com&iframeId=iframe_0.48066091361721597" frameborder="0" scrolling="no" height="26" style="border-style: none; border-width: initial; width: 655px;">

这个更新的规则也叫做 Widrow-Hoff learning rule, 从上到下推导下来只有几步,没有什么高深的理论,但是,仔细观察上面的公式,就可以发现几个 natural and intuitive 的特性。

  1. 首先,权重的更新是跟 y - h(x) 相关的,如果训练样本中预测值与 y 非常接近,表示模型趋于完善,权重改变小。反之,如果预测值与 y 距离比较远,说明模型比较差,这时候权重变化就比较大了。

  2. 权重的变化还与 xi 也就是输入节点的值相关。也就是说,在同一次 train 中,由于 y - h(x) 相同, 细线上的变化与相应的输入节点 x 的大小是成正比的(参考最上面的模型图)。这中间体现的直观印象就是:残差的影响是按照 xi 分配到权重上去滴,这里的残差就是 h(x) - y。

LMS 算法暂时先讲到这里,后面的什么收敛特性、梯度下降之类的有兴趣可以看看 Lecture Notes。

2. MLP 与 BP 算法

前面我们讲过 logistic regression, logistic regression 本质上是线性分类器,只不过是在线性变换后通过 sigmoid 函数作非线性变换。而神经网络 MLP 还要在这个基础上加上一个新的nonlinear function, 为了讨论方便,这里的 nonlinear function 都用 sigmoid 函数,并且损失函数忽略 regulization term, 那么, MLP 的结构就可以用下面这个图来表示:


z: 非线性变换之前的节点值,实际上是前一层节点的线性变换
a: 非线性变换之后的 activation 值

a=f(z): 这里就是 sigmoid function

现在我们要利用 LMS 中的想法来对这个网络进行训练。

假设在某一个时刻,输入节点接受一个输入, MLP 将数据从左到右处理得到输出,这时候产生了残差。在第一小节中,我们知道, LMS 残差等于 h(x) - y。 MLP 的最后一层和 LMS 线性分类器非常相似,我们不妨先把最后一层的权重更新问题解决掉。在这里输出节点由于增加了一个非线性函数,残差的值比 LMS 的残差多了一个求导 (实际上是数学上 chain rule 的推导):

id="iframe_0.43690002141899265" src="https://www.cnblogs.com/show-blocking-image.aspx?url=http%3A%2F%2Fdeeplearning.stanford.edu%2Fwiki%2Fimages%2Fmath%2F5%2F7%2Fa%2F57a203683fc9c009c41ff97c1e1f6f54.png&maxWidth=655&origin=http://www.cnblogs.com&iframeId=iframe_0.43690002141899265" frameborder="0" scrolling="no" height="53" style="border-style: none; border-width: initial; width: 655px;">

得到残差,根据之前猜想出来的规律( - -!), 残差的影响是按照左侧输入节点的 a 值大小按比例分配到权重上去的,所以呢,就可以得到:

id="iframe_0.9480244433873115" src="https://www.cnblogs.com/show-blocking-image.aspx?url=http%3A%2F%2Fdeeplearning.stanford.edu%2Fwiki%2Fimages%2Fmath%2F2%2F1%2Fd%2F21db5874b1c1c14bcb675e9961dac9cb.png&maxWidth=655&origin=http://www.cnblogs.com&iframeId=iframe_0.9480244433873115" frameborder="0" scrolling="no" height="112" style="border-style: none; border-width: initial; width: 655px;">

如果乘以一个 learning rate, 这就是最后一层的权重更新值。

我们在想,要是能得到中间隐层节点上的残差,问题就分解成几个我们刚刚解决的问题。关键是:中间隐层的残差怎么算?

实际上就是按照权重与残差的乘积返回到上一层。完了之后还要乘以非线性函数的导数( again it can be explained by chain rule)

id="iframe_0.5381273894552148" src="https://www.cnblogs.com/show-blocking-image.aspx?url=http%3A%2F%2Fdeeplearning.stanford.edu%2Fwiki%2Fimages%2Fmath%2F2%2F0%2Ff%2F20f9979d6a46e7bca83f217bdfead4f0.png&maxWidth=655&origin=http://www.cnblogs.com&iframeId=iframe_0.5381273894552148" frameborder="0" scrolling="no" height="61" style="border-style: none; border-width: initial; width: 655px;">

得到隐层的残差,我们又可以得到前一层权重的更新值了。这样问题就一步一步解决了。

最后我们发现,其实咱们不用逐层将求残差和权值更新交替进行,可以这样:

  1. 先从右到左把每个节点的残差求出来(数学上表现为反向传导过程)

  2. 然后再求权重的更新值

  3. 更新权重

Q: 这是在 Ng 教程中的计算过程, 但是在有些资料中,比如参考资料 [2],残差和权值更新是逐层交替进行的,那么,上一层的残差等于下一层的残差乘以更新后的权重,明显,Ng 的教程是乘以没有更新的权重,我觉得后者有更好的数学特性,期待解疑!

用一张粗略的静态图表示残差的反向传播:

红色的曲线就是对 sigmoid function 的求导,和高斯分布非常相似。

 用一张动态图表示前向(FP)和后向(BP)传播的全过程:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值