《Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation》论文解读 RNN编解码网络
python中enumerate函数的用法 结合for循环,可以用来遍历列表中的元素以及索引。参考链接:https://blog.csdn.net/churximi/article/details/51648388
如何训练神经网络 全量数据梯度下降:收敛速度较慢。随机梯度下降法:随机性可以保证梯度有一定概率跳出极小值方向。但是在类别很多的分类问题中,容易导致不收敛。小批量数据梯度下降法:两种方法的折中。保证了一定的随机度,同时又能控制随机程度不会过大,导致算法不收敛。收敛至极小值并非什么问题,极小值和最小值接近。损失函数的曲面大致形状是凸的。...
常见面试题作答 1. 过拟合问题如何解决?一般工作中不会出现过拟合问题,大部分是欠拟合问题,如果是过拟合,只需要用early_stopping处理即可。2. 欠拟合问题如何处理?原因有三种,(1)样本不够丰富(2)模型拟合能力较差(3)参数初始化设置方法问题解决:(1)a) 样本的问题,数据增强,例如加噪,扭曲,翻转,调整饱和度,亮度,和色度b) 裁剪图片,增加小样本的权重(如何调整?)(2)换一个更好的模型(3)参数设置的问题要重新处理。3. 常见目标检测,图像分割网路模型的原理(