为了便于管理,先引入个基础类:
public abstract class Sorter < E extends Comparable < E >> {
public abstract void sort(E[] array, int from , int len);
public final void sort(E[] array)
{
sort(array, 0 ,array.length);
}
protected final void swap(E[] array, int from , int to)
{
E tmp = array[from];
array[from] = array[to];
array[to] = tmp;
}
}
一 插入排序public abstract class Sorter < E extends Comparable < E >> {
public abstract void sort(E[] array, int from , int len);
public final void sort(E[] array)
{
sort(array, 0 ,array.length);
}
protected final void swap(E[] array, int from , int to)
{
E tmp = array[from];
array[from] = array[to];
array[to] = tmp;
}
}
该算法在数据规模小的时候十分高效,该算法每次插入第K+1到前K个有序数组中一个合适位置,K从0开始到N-1,从而完成排序:
/**
* @author yovn
*/
public class InsertSorter < E extends Comparable < E >> extends Sorter < E > {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
public void sort(E[] array, int from, int len) {
E tmp = null ;
for ( int i = from + 1 ;i < from + len;i ++ )
{
tmp = array[i];
int j = i;
for (;j > from;j -- )
{
if (tmp.compareTo(array[j - 1 ]) < 0 )
{
array[j] = array[j - 1 ];
}
else break ;
}
array[j] = tmp;
}
}
}
* @author yovn
*/
public class InsertSorter < E extends Comparable < E >> extends Sorter < E > {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
public void sort(E[] array, int from, int len) {
E tmp = null ;
for ( int i = from + 1 ;i < from + len;i ++ )
{
tmp = array[i];
int j = i;
for (;j > from;j -- )
{
if (tmp.compareTo(array[j - 1 ]) < 0 )
{
array[j] = array[j - 1 ];
}
else break ;
}
array[j] = tmp;
}
}
}
二 冒泡排序
这可能是最简单的排序算法了,算法思想是每次从数组末端开始比较相邻两元素,把第i小的冒泡到数组的第i个位置。i从0一直到N-1从而完成排序。(当然也可以从数组开始端开始比较相邻两元素,把第i大的冒泡到数组的第N-i个位置。i从0一直到N-1从而完成排序。)
/**
* @author yovn
*
*/
public class BubbleSorter < E extends Comparable < E >> extends Sorter < E > {
private static boolean DWON = true ;
public final void bubble_down(E[] array, int from, int len)
{
for ( int i = from;i < from + len;i ++ )
{
for ( int j = from + len - 1 ;j > i;j -- )
{
if (array[j].compareTo(array[j - 1 ]) < 0 )
{
swap(array,j - 1 ,j);
}
}
}
}
public final void bubble_up(E[] array, int from, int len)
{
for ( int i = from + len - 1 ;i >= from;i -- )
{
for ( int j = from;j < i;j ++ )
{
if (array[j].compareTo(array[j + 1 ]) > 0 )
{
swap(array,j,j + 1 );
}
}
}
}
@Override
public void sort(E[] array, int from, int len) {
if (DWON)
{
bubble_down(array,from,len);
}
else
{
bubble_up(array,from,len);
}
}
}
* @author yovn
*
*/
public class BubbleSorter < E extends Comparable < E >> extends Sorter < E > {
private static boolean DWON = true ;
public final void bubble_down(E[] array, int from, int len)
{
for ( int i = from;i < from + len;i ++ )
{
for ( int j = from + len - 1 ;j > i;j -- )
{
if (array[j].compareTo(array[j - 1 ]) < 0 )
{
swap(array,j - 1 ,j);
}
}
}
}
public final void bubble_up(E[] array, int from, int len)
{
for ( int i = from + len - 1 ;i >= from;i -- )
{
for ( int j = from;j < i;j ++ )
{
if (array[j].compareTo(array[j + 1 ]) > 0 )
{
swap(array,j,j + 1 );
}
}
}
}
@Override
public void sort(E[] array, int from, int len) {
if (DWON)
{
bubble_down(array,from,len);
}
else
{
bubble_up(array,from,len);
}
}
}
三,选择排序
选择排序相对于冒泡来说,它不是每次发现逆序都交换,而是在找到全局第i小的时候记下该元素位置,最后跟第i个元素交换,从而保证数组最终的有序。
相对与插入排序来说,选择排序每次选出的都是全局第i小的,不会调整前i个元素了。
/**
* @author yovn
*
*/
public class SelectSorter < E extends Comparable < E >> extends Sorter < E > {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public void sort(E[] array, int from, int len) {
for ( int i = 0 ;i < len;i ++ )
{
int smallest = i;
int j = i + from;
for (;j < from + len;j ++ )
{
if (array[j].compareTo(array[smallest]) < 0 )
{
smallest = j;
}
}
swap(array,i,smallest);
}
}
}
* @author yovn
*
*/
public class SelectSorter < E extends Comparable < E >> extends Sorter < E > {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public void sort(E[] array, int from, int len) {
for ( int i = 0 ;i < len;i ++ )
{
int smallest = i;
int j = i + from;
for (;j < from + len;j ++ )
{
if (array[j].compareTo(array[smallest]) < 0 )
{
smallest = j;
}
}
swap(array,i,smallest);
}
}
}
四 Shell排序
Shell排序可以理解为插入排序的变种,它充分利用了插入排序的两个特点:
1)当数据规模小的时候非常高效
2)当给定数据已经有序时的时间代价为O(N)
所以,Shell排序每次把数据分成若个小块,来使用插入排序,而且之后在这若个小块排好序的情况下把它们合成大一点的小块,继续使用插入排序,不停的合并小块,知道最后成一个块,并使用插入排序。
这里每次分成若干小块是通过“增量” 来控制的,开始时增量交大,接近N/2,从而使得分割出来接近N/2个小块,逐渐的减小“增量“最终到减小到1。
一直较好的增量序列是2^k-1,2^(k-1)-1,.....7,3,1,这样可使Shell排序时间复杂度达到O(N^1.5)
所以我在实现Shell排序的时候采用该增量序列
/**
* @author yovn
*/
public class ShellSorter < E extends Comparable < E >> extends Sorter < E > {
/* (non-Javadoc)
* Our delta value choose 2^k-1,2^(k-1)-1,.7,3,1.
* complexity is O(n^1.5)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public void sort(E[] array, int from, int len) {
// 1.calculate the first delta value;
int value = 1 ;
while ((value + 1 ) * 2 < len)
{
value = (value + 1 ) * 2 - 1 ;
}
for ( int delta = value;delta >= 1 ;delta = (delta + 1 ) / 2 - 1 )
{
for ( int i = 0 ;i < delta;i ++ )
{
modify_insert_sort(array,from + i,len - i,delta);
}
}
}
private final void modify_insert_sort(E[] array, int from, int len, int delta) {
if (len <= 1 ) return ;
E tmp = null ;
for ( int i = from + delta;i < from + len;i += delta)
{
tmp = array[i];
int j = i;
for (;j > from;j -= delta)
{
if (tmp.compareTo(array[j - delta]) < 0 )
{
array[j] = array[j - delta];
}
else break ;
}
array[j] = tmp;
}
}
}
* @author yovn
*/
public class ShellSorter < E extends Comparable < E >> extends Sorter < E > {
/* (non-Javadoc)
* Our delta value choose 2^k-1,2^(k-1)-1,.7,3,1.
* complexity is O(n^1.5)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public void sort(E[] array, int from, int len) {
// 1.calculate the first delta value;
int value = 1 ;
while ((value + 1 ) * 2 < len)
{
value = (value + 1 ) * 2 - 1 ;
}
for ( int delta = value;delta >= 1 ;delta = (delta + 1 ) / 2 - 1 )
{
for ( int i = 0 ;i < delta;i ++ )
{
modify_insert_sort(array,from + i,len - i,delta);
}
}
}
private final void modify_insert_sort(E[] array, int from, int len, int delta) {
if (len <= 1 ) return ;
E tmp = null ;
for ( int i = from + delta;i < from + len;i += delta)
{
tmp = array[i];
int j = i;
for (;j > from;j -= delta)
{
if (tmp.compareTo(array[j - delta]) < 0 )
{
array[j] = array[j - delta];
}
else break ;
}
array[j] = tmp;
}
}
}
五 快速排序
快速排序是目前使用可能最广泛的排序算法了。
一般分如下步骤:
1)选择一个枢纽元素(有很对选法,我的实现里采用去中间元素的简单方法)
2)使用该枢纽元素分割数组,使得比该元素小的元素在它的左边,比它大的在右边。并把枢纽元素放在合适的位置。
3)根据枢纽元素最后确定的位置,把数组分成三部分,左边的,右边的,枢纽元素自己,对左边的,右边的分别递归调用快速排序算法即可。
快速排序的核心在于分割算法,也可以说是最有技巧的部分。
/**
* @author yovn
*
*/
public class QuickSorter < E extends Comparable < E >> extends Sorter < E > {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public void sort(E[] array, int from, int len) {
q_sort(array,from,from + len - 1 );
}
private final void q_sort(E[] array, int from, int to) {
if (to - from < 1 ) return ;
int pivot = selectPivot(array,from,to);
pivot = partion(array,from,to,pivot);
q_sort(array,from,pivot - 1 );
q_sort(array,pivot + 1 ,to);
}
private int partion(E[] array, int from, int to, int pivot) {
E tmp = array[pivot];
array[pivot] = array[to]; // now to's position is available
while (from != to)
{
while (from < to && array[from].compareTo(tmp) <= 0 )from ++ ;
if (from < to)
{
array[to] = array[from]; // now from's position is available
to -- ;
}
while (from < to && array[to].compareTo(tmp) >= 0 )to -- ;
if (from < to)
{
array[from] = array[to]; // now to's position is available now
from ++ ;
}
}
array[from] = tmp;
return from;
}
private int selectPivot(E[] array, int from, int to) {
return (from + to) / 2 ;
}
}
* @author yovn
*
*/
public class QuickSorter < E extends Comparable < E >> extends Sorter < E > {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public void sort(E[] array, int from, int len) {
q_sort(array,from,from + len - 1 );
}
private final void q_sort(E[] array, int from, int to) {
if (to - from < 1 ) return ;
int pivot = selectPivot(array,from,to);
pivot = partion(array,from,to,pivot);
q_sort(array,from,pivot - 1 );
q_sort(array,pivot + 1 ,to);
}
private int partion(E[] array, int from, int to, int pivot) {
E tmp = array[pivot];
array[pivot] = array[to]; // now to's position is available
while (from != to)
{
while (from < to && array[from].compareTo(tmp) <= 0 )from ++ ;
if (from < to)
{
array[to] = array[from]; // now from's position is available
to -- ;
}
while (from < to && array[to].compareTo(tmp) >= 0 )to -- ;
if (from < to)
{
array[from] = array[to]; // now to's position is available now
from ++ ;
}
}
array[from] = tmp;
return from;
}
private int selectPivot(E[] array, int from, int to) {
return (from + to) / 2 ;
}
}
六 归并排序
算法思想是每次把待排序列分成两部分,分别对这两部分递归地用归并排序,完成后把这两个子部分合并成一个
序列。
归并排序借助一个全局性临时数组来方便对子序列的归并,该算法核心在于归并。
import
java.lang.reflect.Array;
/**
* @author yovn
*
*/
public class MergeSorter < E extends Comparable < E >> extends Sorter < E > {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@SuppressWarnings( " unchecked " )
@Override
public void sort(E[] array, int from, int len) {
if (len <= 1 ) return ;
E[] temporary = (E[])Array.newInstance(array[ 0 ].getClass(),len);
merge_sort(array,from,from + len - 1 ,temporary);
}
private final void merge_sort(E[] array, int from, int to, E[] temporary) {
if (to <= from)
{
return ;
}
int middle = (from + to) / 2 ;
merge_sort(array,from,middle,temporary);
merge_sort(array,middle + 1 ,to,temporary);
merge(array,from,to,middle,temporary);
}
private final void merge(E[] array, int from, int to, int middle, E[] temporary) {
int k = 0 ,leftIndex = 0 ,rightIndex = to - from;
System.arraycopy(array, from, temporary, 0 , middle - from + 1 );
for ( int i = 0 ;i < to - middle;i ++ )
{
temporary[to - from - i] = array[middle + i + 1 ];
}
while (k < to - from + 1 )
{
if (temporary[leftIndex].compareTo(temporary[rightIndex]) < 0 )
{
array[k + from] = temporary[leftIndex ++ ];
}
else
{
array[k + from] = temporary[rightIndex -- ];
}
k ++ ;
}
}
}
/**
* @author yovn
*
*/
public class MergeSorter < E extends Comparable < E >> extends Sorter < E > {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@SuppressWarnings( " unchecked " )
@Override
public void sort(E[] array, int from, int len) {
if (len <= 1 ) return ;
E[] temporary = (E[])Array.newInstance(array[ 0 ].getClass(),len);
merge_sort(array,from,from + len - 1 ,temporary);
}
private final void merge_sort(E[] array, int from, int to, E[] temporary) {
if (to <= from)
{
return ;
}
int middle = (from + to) / 2 ;
merge_sort(array,from,middle,temporary);
merge_sort(array,middle + 1 ,to,temporary);
merge(array,from,to,middle,temporary);
}
private final void merge(E[] array, int from, int to, int middle, E[] temporary) {
int k = 0 ,leftIndex = 0 ,rightIndex = to - from;
System.arraycopy(array, from, temporary, 0 , middle - from + 1 );
for ( int i = 0 ;i < to - middle;i ++ )
{
temporary[to - from - i] = array[middle + i + 1 ];
}
while (k < to - from + 1 )
{
if (temporary[leftIndex].compareTo(temporary[rightIndex]) < 0 )
{
array[k + from] = temporary[leftIndex ++ ];
}
else
{
array[k + from] = temporary[rightIndex -- ];
}
k ++ ;
}
}
}
七 堆排序
堆是一种完全二叉树,一般使用数组来实现。
堆主要有两种核心操作,
1)从指定节点向上调整(shiftUp)
2)从指定节点向下调整(shiftDown)
建堆,以及删除堆定节点使用shiftDwon,而在插入节点时一般结合两种操作一起使用。
堆排序借助最大值堆来实现,第i次从堆顶移除最大值放到数组的倒数第i个位置,然后shiftDown到倒数第i+1个位置,一共执行N此调整,即完成排序。
显然,堆排序也是一种选择性的排序,每次选择第i大的元素。
/**
* @author yovn
*
*/
public class HeapSorter < E extends Comparable < E >> extends Sorter < E > {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public void sort(E[] array, int from, int len) {
build_heap(array,from,len);
for ( int i = 0 ;i < len;i ++ )
{
// swap max value to the (len-i)-th position
swap(array,from,from + len - 1 - i);
shift_down(array,from,len - 1 - i, 0 ); // always shiftDown from 0
}
}
private final void build_heap(E[] array, int from, int len) {
int pos = (len - 1 ) / 2 ; // we start from (len-1)/2, because branch's node +1=leaf's node, and all leaf node is already a heap
for ( int i = pos;i >= 0 ;i -- )
{
shift_down(array,from,len,i);
}
}
private final void shift_down(E[] array, int from, int len, int pos)
{
E tmp = array[from + pos];
int index = pos * 2 + 1 ; // use left child
while (index < len) // until no child
{
if (index + 1 < len && array[from + index].compareTo(array[from + index + 1 ]) < 0 ) // right child is bigger
{
index += 1 ; // switch to right child
}
if (tmp.compareTo(array[from + index]) < 0 )
{
array[from + pos] = array[from + index];
pos = index;
index = pos * 2 + 1 ;
}
else
{
break ;
}
}
array[from + pos] = tmp;
}
}
* @author yovn
*
*/
public class HeapSorter < E extends Comparable < E >> extends Sorter < E > {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public void sort(E[] array, int from, int len) {
build_heap(array,from,len);
for ( int i = 0 ;i < len;i ++ )
{
// swap max value to the (len-i)-th position
swap(array,from,from + len - 1 - i);
shift_down(array,from,len - 1 - i, 0 ); // always shiftDown from 0
}
}
private final void build_heap(E[] array, int from, int len) {
int pos = (len - 1 ) / 2 ; // we start from (len-1)/2, because branch's node +1=leaf's node, and all leaf node is already a heap
for ( int i = pos;i >= 0 ;i -- )
{
shift_down(array,from,len,i);
}
}
private final void shift_down(E[] array, int from, int len, int pos)
{
E tmp = array[from + pos];
int index = pos * 2 + 1 ; // use left child
while (index < len) // until no child
{
if (index + 1 < len && array[from + index].compareTo(array[from + index + 1 ]) < 0 ) // right child is bigger
{
index += 1 ; // switch to right child
}
if (tmp.compareTo(array[from + index]) < 0 )
{
array[from + pos] = array[from + index];
pos = index;
index = pos * 2 + 1 ;
}
else
{
break ;
}
}
array[from + pos] = tmp;
}
}
八 桶式排序
桶式排序不再是基于比较的了,它和基数排序同属于分配类的排序,这类排序的特点是事先要知道待排序列的一些特征。
桶式排序事先要知道待排序列在一个范围内,而且这个范围应该不是很大的。
比如知道待排序列在[0,M)内,那么可以分配M个桶,第I个桶记录I的出现情况,最后根据每个桶收到的位置信息把数据输出成有序的形式。
这里我们用两个临时性数组,一个用于记录位置信息,一个用于方便输出数据成有序方式,另外我们假设数据落在0到MAX,如果所给数据不是从0开始,你可以把每个数减去最小的数。
/**
* @author yovn
*
*/
public class BucketSorter {
public void sort( int [] keys, int from, int len, int max)
{
int [] temp = new int [len];
int [] count = new int [max];
for ( int i = 0 ;i < len;i ++ )
{
count[keys[from + i]] ++ ;
}
// calculate position info
for ( int i = 1 ;i < max;i ++ )
{
count[i] = count[i] + count[i - 1 ]; // this means how many number which is less or equals than i,thus it is also position + 1
}
System.arraycopy(keys, from, temp, 0 , len);
for ( int k = len - 1 ;k >= 0 ;k -- ) //from the ending to beginning can keep the stability
{
keys[ -- count[temp[k]]] = temp[k]; // position +1 =count
}
}
/**
* @param args
*/
public static void main(String[] args) {
int [] a = { 1 , 4 , 8 , 3 , 2 , 9 , 5 , 0 , 7 , 6 , 9 , 10 , 9 , 13 , 14 , 15 , 11 , 12 , 17 , 16 };
BucketSorter sorter = new BucketSorter();
sorter.sort(a, 0 ,a.length, 20 ); // actually is 18, but 20 will also work
for ( int i = 0 ;i < a.length;i ++ )
{
System.out.print(a[i] + " , " );
}
}
}
* @author yovn
*
*/
public class BucketSorter {
public void sort( int [] keys, int from, int len, int max)
{
int [] temp = new int [len];
int [] count = new int [max];
for ( int i = 0 ;i < len;i ++ )
{
count[keys[from + i]] ++ ;
}
// calculate position info
for ( int i = 1 ;i < max;i ++ )
{
count[i] = count[i] + count[i - 1 ]; // this means how many number which is less or equals than i,thus it is also position + 1
}
System.arraycopy(keys, from, temp, 0 , len);
for ( int k = len - 1 ;k >= 0 ;k -- ) //from the ending to beginning can keep the stability
{
keys[ -- count[temp[k]]] = temp[k]; // position +1 =count
}
}
/**
* @param args
*/
public static void main(String[] args) {
int [] a = { 1 , 4 , 8 , 3 , 2 , 9 , 5 , 0 , 7 , 6 , 9 , 10 , 9 , 13 , 14 , 15 , 11 , 12 , 17 , 16 };
BucketSorter sorter = new BucketSorter();
sorter.sort(a, 0 ,a.length, 20 ); // actually is 18, but 20 will also work
for ( int i = 0 ;i < a.length;i ++ )
{
System.out.print(a[i] + " , " );
}
}
}
九 基数排序
基数排序可以说是扩展了的桶式排序,比如当待排序列在一个很大的范围内,比如0到999999内,那么用桶式排序是很浪费空间的。而基数排序把每个排序码拆成由d个排序码,比如任何一个6位数(不满六位前面补0)拆成6个排序码,分别是个位的,十位的,百位的。。。。
排序时,分6次完成,每次按第i个排序码来排。
一般有两种方式:
1) 高位优先(MSD): 从高位到低位依次对序列排序
2)低位优先(LSD): 从低位到高位依次对序列排序
计算机一般采用低位优先法(人类一般使用高位优先),但是采用低位优先时要确保排序算法的稳定性。
基数排序借助桶式排序,每次按第N位排序时,采用桶式排序。对于如何安排每次落入同一个桶中的数据有两种安排方法:
1)顺序存储:每次使用桶式排序,放入r个桶中,,相同时增加计数。
2)链式存储:每个桶通过一个静态队列来跟踪。
import
java.util.Arrays;
/**
* @author yovn
*
*/
public class RadixSorter {
public static boolean USE_LINK = true ;
/**
*
* @param keys
* @param from
* @param len
* @param radix key's radix
* @param d how many sub keys should one key divide to
*/
public void sort( int [] keys, int from , int len, int radix, int d)
{
if (USE_LINK)
{
link_radix_sort(keys,from,len,radix,d);
}
else
{
array_radix_sort(keys,from,len,radix,d);
}
}
private final void array_radix_sort( int [] keys, int from, int len, int radix,
int d)
{
int [] temporary = new int [len];
int [] count = new int [radix];
int R = 1 ;
for ( int i = 0 ;i < d;i ++ )
{
System.arraycopy(keys, from, temporary, 0 , len);
Arrays.fill(count, 0 );
for ( int k = 0 ;k < len;k ++ )
{
int subkey = (temporary[k] / R) % radix;
count[subkey] ++ ;
}
for ( int j = 1 ;j < radix;j ++ )
{
count[j] = count[j] + count[j - 1 ];
}
for ( int m = len - 1 ;m >= 0 ;m -- )
{
int subkey = (temporary[m] / R) % radix;
-- count[subkey];
keys[from + count[subkey]] = temporary[m];
}
R *= radix;
}
}
private static class LinkQueue
{
int head =- 1 ;
int tail =- 1 ;
}
private final void link_radix_sort( int [] keys, int from, int len, int radix, int d) {
int [] nexts = new int [len];
LinkQueue[] queues = new LinkQueue[radix];
for ( int i = 0 ;i < radix;i ++ )
{
queues[i] = new LinkQueue();
}
for ( int i = 0 ;i < len - 1 ;i ++ )
{
nexts[i] = i + 1 ;
}
nexts[len - 1 ] =- 1 ;
int first = 0 ;
for ( int i = 0 ;i < d;i ++ )
{
link_radix_sort_distribute(keys,from,len,radix,i,nexts,queues,first);
first = link_radix_sort_collect(keys,from,len,radix,i,nexts,queues);
}
int [] tmps = new int [len];
int k = 0 ;
while (first !=- 1 )
{
tmps[k ++ ] = keys[from + first];
first = nexts[first];
}
System.arraycopy(tmps, 0 , keys, from, len);
}
private final void link_radix_sort_distribute( int [] keys, int from, int len,
int radix, int d, int [] nexts, LinkQueue[] queues, int first) {
for ( int i = 0 ;i < radix;i ++ )queues[i].head = queues[i].tail =- 1 ;
while (first !=- 1 )
{
int val = keys[from + first];
for ( int j = 0 ;j < d;j ++ )val /= radix;
val = val % radix;
if (queues[val].head ==- 1 )
{
queues[val].head = first;
}
else
{
nexts[queues[val].tail] = first;
}
queues[val].tail = first;
first = nexts[first];
}
}
private int link_radix_sort_collect( int [] keys, int from, int len,
int radix, int d, int [] nexts, LinkQueue[] queues) {
int first = 0 ;
int last = 0 ;
int fromQueue = 0 ;
for (;(fromQueue < radix - 1 ) && (queues[fromQueue].head ==- 1 );fromQueue ++ );
first = queues[fromQueue].head;
last = queues[fromQueue].tail;
while (fromQueue < radix - 1 && queues[fromQueue].head !=- 1 )
{
fromQueue += 1 ;
for (;(fromQueue < radix - 1 ) && (queues[fromQueue].head ==- 1 );fromQueue ++ );
nexts[last] = queues[fromQueue].head;
last = queues[fromQueue].tail;
}
if (last !=- 1 )nexts[last] =- 1 ;
return first;
}
/**
* @param args
*/
public static void main(String[] args) {
int [] a = { 1 , 4 , 8 , 3 , 2 , 9 , 5 , 0 , 7 , 6 , 9 , 10 , 9 , 135 , 14 , 15 , 11 , 222222222 , 1111111111 , 12 , 17 , 45 , 16 };
USE_LINK = true ;
RadixSorter sorter = new RadixSorter();
sorter.sort(a, 0 ,a.length, 10 , 10 );
for ( int i = 0 ;i < a.length;i ++ )
{
System.out.print(a[i] + " , " );
}
}
}
/**
* @author yovn
*
*/
public class RadixSorter {
public static boolean USE_LINK = true ;
/**
*
* @param keys
* @param from
* @param len
* @param radix key's radix
* @param d how many sub keys should one key divide to
*/
public void sort( int [] keys, int from , int len, int radix, int d)
{
if (USE_LINK)
{
link_radix_sort(keys,from,len,radix,d);
}
else
{
array_radix_sort(keys,from,len,radix,d);
}
}
private final void array_radix_sort( int [] keys, int from, int len, int radix,
int d)
{
int [] temporary = new int [len];
int [] count = new int [radix];
int R = 1 ;
for ( int i = 0 ;i < d;i ++ )
{
System.arraycopy(keys, from, temporary, 0 , len);
Arrays.fill(count, 0 );
for ( int k = 0 ;k < len;k ++ )
{
int subkey = (temporary[k] / R) % radix;
count[subkey] ++ ;
}
for ( int j = 1 ;j < radix;j ++ )
{
count[j] = count[j] + count[j - 1 ];
}
for ( int m = len - 1 ;m >= 0 ;m -- )
{
int subkey = (temporary[m] / R) % radix;
-- count[subkey];
keys[from + count[subkey]] = temporary[m];
}
R *= radix;
}
}
private static class LinkQueue
{
int head =- 1 ;
int tail =- 1 ;
}
private final void link_radix_sort( int [] keys, int from, int len, int radix, int d) {
int [] nexts = new int [len];
LinkQueue[] queues = new LinkQueue[radix];
for ( int i = 0 ;i < radix;i ++ )
{
queues[i] = new LinkQueue();
}
for ( int i = 0 ;i < len - 1 ;i ++ )
{
nexts[i] = i + 1 ;
}
nexts[len - 1 ] =- 1 ;
int first = 0 ;
for ( int i = 0 ;i < d;i ++ )
{
link_radix_sort_distribute(keys,from,len,radix,i,nexts,queues,first);
first = link_radix_sort_collect(keys,from,len,radix,i,nexts,queues);
}
int [] tmps = new int [len];
int k = 0 ;
while (first !=- 1 )
{
tmps[k ++ ] = keys[from + first];
first = nexts[first];
}
System.arraycopy(tmps, 0 , keys, from, len);
}
private final void link_radix_sort_distribute( int [] keys, int from, int len,
int radix, int d, int [] nexts, LinkQueue[] queues, int first) {
for ( int i = 0 ;i < radix;i ++ )queues[i].head = queues[i].tail =- 1 ;
while (first !=- 1 )
{
int val = keys[from + first];
for ( int j = 0 ;j < d;j ++ )val /= radix;
val = val % radix;
if (queues[val].head ==- 1 )
{
queues[val].head = first;
}
else
{
nexts[queues[val].tail] = first;
}
queues[val].tail = first;
first = nexts[first];
}
}
private int link_radix_sort_collect( int [] keys, int from, int len,
int radix, int d, int [] nexts, LinkQueue[] queues) {
int first = 0 ;
int last = 0 ;
int fromQueue = 0 ;
for (;(fromQueue < radix - 1 ) && (queues[fromQueue].head ==- 1 );fromQueue ++ );
first = queues[fromQueue].head;
last = queues[fromQueue].tail;
while (fromQueue < radix - 1 && queues[fromQueue].head !=- 1 )
{
fromQueue += 1 ;
for (;(fromQueue < radix - 1 ) && (queues[fromQueue].head ==- 1 );fromQueue ++ );
nexts[last] = queues[fromQueue].head;
last = queues[fromQueue].tail;
}
if (last !=- 1 )nexts[last] =- 1 ;
return first;
}
/**
* @param args
*/
public static void main(String[] args) {
int [] a = { 1 , 4 , 8 , 3 , 2 , 9 , 5 , 0 , 7 , 6 , 9 , 10 , 9 , 135 , 14 , 15 , 11 , 222222222 , 1111111111 , 12 , 17 , 45 , 16 };
USE_LINK = true ;
RadixSorter sorter = new RadixSorter();
sorter.sort(a, 0 ,a.length, 10 , 10 );
for ( int i = 0 ;i < a.length;i ++ )
{
System.out.print(a[i] + " , " );
}
}
}