面向初学者程序员的五门Udemy 课程。

本文列举了几个适合初学者的编程课程,包括Angela Yu博士的Python和Web开发训练营,Jonas Schmeidler的JavaScript课程,以及Andrei Neagoie的Python全栈课程,覆盖了Python、JavaScript、Web开发和数据科学等领域。通过这些课程,你可以从零基础开始,逐步掌握编程技能并构建实际项目。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

        有零编程经验?想从头开始学习编码吗?这里有一些学习编码和确保工作的最佳课程。

100 天代码:Angela Yu 博士的完整 Python 专业训练营

        它是最好的、循序渐进的 Python 学习课程之一。它有更多的塔ñ 650周的经验教训。您将每天制作一个项目,持续 100 天。学习使用 Python 构建 Blackjack、Pong 和 Snake 等游戏。能够使用 Python 进行数据科学和机器学习。学习使用现代框架,如 Selenium、Beautiful Soup、Request、Flask、Pandas、NumPy、Scikit Learn、Plotly、Matplotlib、Seaborn。它包括交互式编码练习、测验等等。

Angela Yu 博士的完整 2022 Web 开发训练营

        本课程包含使您成为全栈开发人员的所有要素。HTML、CSS、JavaScript、NodeJs、React 等等,都在一门课程中。于博士经常更新课程以获得最佳学习体验。您将学习为您的初创公司或企业构建成熟的网站和 Web 应用程序,使用 Node 掌握后端开发,学习最新的框架和技术,包括 JavaScript ES6、Bootstrap 4、MongoDB 以及使用 React 掌握前端开发。正如成千上万的学生所说——“这是最好的。”

2022 年完整的 JavaScript 课程:从零到专家!作者:乔纳斯·施梅特曼

        · 您将从头开始逐步学习现代 JavaScript。我将引导您了解实用且有趣的代码示例 有关 JavaScript 在幕后如何工作的重要理论以及 精美而完整的项目。您将为您的投资组合构建 5 个美丽的现实世界项目!在这些项目中,您将学习如何使用流程图和常见 JavaScript 模式来规划和构建您的应用程序,掌握 JavaScript 基础知识:变量、if/else、运算符、布尔逻辑、函数、数组、对象、循环、字符串等,从头开始学习现代 JavaScript (ES6+):箭头函数、解构、展开运算符、默认参数、可选链 (ES2020) 等等。

完整的 Python 开发人员:Andrei Neagoie 从零到精通

        从头开始学习 Python,被录用,并在 Udemy 上最现代、最新的 Python 课程中享受乐趣(我们使用最新版本的 Python)。本课程侧重于效率:不再花时间在令人困惑、过时、不完整的 Python 教程上。从编程基础到 Web 开发、 机器学习数据科学自动化、图像检测  数据可视化,本课程涵盖了所有内容。332 个讲座以及资源和练习。

C++20 大师班:从基础到高级 Daniel Galway

        一门旨在 教您从绝对开始一直到非常高级的主题的尖端现代 C++ 的课程,这些主题是您在现代大量使用 C++ 的领域所需的主题。想成为自信的游戏开发者吗?金融领域的高性能应用,在服务器系统、网络基础设施、数据库系统甚至操作系统本身之上运行的强大软件模块如何?这是适合您的课程。564 个讲座和 112 小时的点播视频模块触手可及,学习编码。

七爪网7claw.com
https://www.udemy.com/deep-learning-convolutional-neural-networks-theano-tensorflow/ Deep Learning: Convolutional Neural Networks in Python Computer Vision and Data Science and Machine Learning combined! In Theano and TensorFlow Created by Lazy Programmer Inc. Last updated 5/2017 English What Will I Learn? Understand convolution Understand how convolution can be applied to audio effects Understand how convolution can be applied to image effects Implement Gaussian blur and edge detection in code Implement a simple echo effect in code Understand how convolution helps image classification Understand and explain the architecture of a convolutional neural network (CNN) Implement a convolutional neural network in Theano Implement a convolutional neural network in TensorFlow Requirements Install Python, Numpy, Scipy, Matplotlib, Scikit Learn, Theano, and TensorFlow Learn about backpropagation from Deep Learning in Python part 1 Learn about Theano and TensorFlow implementations of Neural Networks from Deep Learning part 2 Description This is the 3rd part in my Data Science and Machine Learning series on Deep Learning in Python. At this point, you already know a lot about neural networks and deep learning, including not just the basics like backpropagation, but how to improve it using modern techniques like momentum and adaptive learning rates. You’ve already written deep neural networks in Theano and TensorFlow, and you know how to run code using the GPU. This course is all about how to use deep learning for computer vision using convolutional neural networks. These are the state of the art when it comes to image classification and they beat vanilla deep networks at tasks like MNIST. In this course we are going to up the ante and look at the StreetView House Number (SVHN) dataset – which uses larger color images at various angles – so things are going to get tougher both computationally and in terms of the difficulty of the classification task. But we will show that convolutional neural networks, or CNNs, are capable of handling the challenge! Because convolution is such a central part of this type of neural network, we are going to go in-depth on this topic. It has more applications than you might imagine, such as modeling artificial organs like the pancreas and the heart. I’m going to show you how to build convolutional filters that can be applied to audio, like the echo effect, and I’m going to show you how to build filters for image effects, like the Gaussian blur and edge detection. We will also do some biology and talk about how convolutional neural networks have been inspired by the animal visual cortex. After describing the architecture of a convolutional neural network, we will jump straight into code, and I will show you how to extend the deep neural networks we built last time (in part 2) with just a few new functions to turn them into CNNs. We will then test their performance and show how convolutional neural networks written in both Theano and TensorFlow can outperform the accuracy of a plain neural network on the StreetView House Number dataset. All the materials for this course are FREE. You can download and install Python, Numpy, Scipy, Theano, and TensorFlow with simple commands shown in previous courses. This course focuses on “how to build and understand“, not just “how to use”. Anyone can learn to use an API in 15 minutes after reading some documentation. It’s not about “remembering facts”, it’s about “seeing for yourself” via experimentation. It will teach you how to visualize what’s happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you. NOTES: All the code for this course can be downloaded from my github: /lazyprogrammer/machine_learning_examples In the directory: cnn_class Make sure you always “git pull” so you have the latest version! HARD PREREQUISITES / KNOWLEDGE YOU ARE ASSUMED TO HAVE: calculus linear algebra probability Python coding: if/else, loops, lists, dicts, sets Numpy coding: matrix and vector operations, loading a CSV file Can write a feedforward neural network in Theano and TensorFlow TIPS (for getting through the course): Watch it at 2x. Take handwritten notes. This will drastically increase your ability to retain the information. Write down the equations. If you don’t, I guarantee it will just look like gibberish. Ask lots of questions on the discussion board. The more the better! Realize that most exercises will take you days or weeks to complete. Write code yourself, don’t just sit there and look at my code. USEFUL COURSE ORDERING: (The Numpy Stack in Python) Linear Regression in Python Logistic Regression in Python (Supervised Machine Learning in Python) (Bayesian Machine Learning in Python: A/B Testing) Deep Learning in Python Practical Deep Learning in Theano and TensorFlow (Supervised Machine Learning in Python 2: Ensemble Methods) Convolutional Neural Networks in Python (Easy NLP) (Cluster Analysis and Unsupervised Machine Learning) Unsupervised Deep Learning (Hidden Markov Models) Recurrent Neural Networks in Python Artificial Intelligence: Reinforcement Learning in Python Natural Language Processing with Deep Learning in Python Who is the target audience? Students and professional computer scientists Software engineers Data scientists who work on computer vision tasks Those who want to apply deep learning to images Those who want to expand their knowledge of deep learning past vanilla deep networks People who don’t know what backpropagation is or how it works should not take this course, but instead, take parts 1 and 2. People who are not comfortable with Theano and TensorFlow basics should take part 2 before taking this course.
https://www.udemy.com/deep-learning-recurrent-neural-networks-in-python/ Deep Learning: Recurrent Neural Networks in Python GRU, LSTM, + more modern deep learning, machine learning, and data science for sequences Created by Lazy Programmer Inc. Last updated 5/2017 English What Will I Learn? Understand the simple recurrent unit (Elman unit) Understand the GRU (gated recurrent unit) Understand the LSTM (long short-term memory unit) Write various recurrent networks in Theano Understand backpropagation through time Understand how to mitigate the vanishing gradient problem Solve the XOR and parity problems using a recurrent neural network Use recurrent neural networks for language modeling Use RNNs for generating text, like poetry Visualize word embeddings and look for patterns in word vector representations Requirements Calculus Linear algebra Python, Numpy, Matplotlib Write a neural network in Theano Understand backpropagation Probability (conditional and joint distributions) Write a neural network in Tensorflow Description Like the course I just released on Hidden Markov Models, Recurrent Neural Networks are all about learning sequences – but whereas Markov Models are limited by the Markov assumption, Recurrent Neural Networks are not – and as a result, they are more expressive, and more powerful than anything we’ve seen on tasks that we haven’t made progress on in decades. So what’s going to be in this course and how will it build on the previous neural network courses and Hidden Markov Models? In the first section of the course we are going to add the concept of time to our neural networks. I’ll introduce you to the Simple Recurrent Unit, also known as the Elman unit. We are going to revisit the XOR problem, but we’re going to extend it so that it becomes the parity problem – you’ll see that regular feedforward neural networks will have trouble solving this problem but recurrent networks will work because the key is to treat the input as a sequence. In the next section of the course, we are going to revisit one of the most popular applications of recurrent neural networks – language modeling. You saw when we studied Markov Models that we could do things like generate poetry and it didn’t look too bad. We could even discriminate between 2 different poets just from the sequence of parts-of-speech tags they used. In this course, we are going to extend our language model so that it no longer makes the Markov assumption. Another popular application of neural networks for language is word vectors or word embeddings. The most common technique for this is called Word2Vec, but I’ll show you how recurrent neural networks can also be used for creating word vectors. In the section after, we’ll look at the very popular LSTM, or long short-term memory unit, and the more modern and efficient GRU, or gated recurrent unit, which has been proven to yield comparable performance. We’ll apply these to some more practical problems, such as learning a language model from Wikipedia data and visualizing the word embeddings we get as a result. All of the materials required for this course can be downloaded and installed for FREE. We will do most of our work in Numpy, Matplotlib, and Theano. I am always available to answer your questions and help you along your data science journey. This course focuses on “how to build and understand“, not just “how to use”. Anyone can learn to use an API in 15 minutes after reading some documentation. It’s not about “remembering facts”, it’s about “seeing for yourself” via experimentation. It will teach you how to visualize what’s happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you. See you in class! NOTES: All the code for this course can be downloaded from my github: /lazyprogrammer/machine_learning_examples In the directory: rnn_class Make sure you always “git pull” so you have the latest version! HARD PREREQUISITES / KNOWLEDGE YOU ARE ASSUMED TO HAVE: calculus linear algebra probability (conditional and joint distributions) Python coding: if/else, loops, lists, dicts, sets Numpy coding: matrix and vector operations, loading a CSV file Deep learning: backpropagation, XOR problem Can write a neural network in Theano and Tensorflow TIPS (for getting through the course): Watch it at 2x. Take handwritten notes. This will drastically increase your ability to retain the information. Write down the equations. If you don’t, I guarantee it will just look like gibberish. Ask lots of questions on the discussion board. The more the better! Realize that most exercises will take you days or weeks to complete. Write code yourself, don’t just sit there and look at my code. USEFUL COURSE ORDERING: (The Numpy Stack in Python) Linear Regression in Python Logistic Regression in Python (Supervised Machine Learning in Python) (Bayesian Machine Learning in Python: A/B Testing) Deep Learning in Python Practical Deep Learning in Theano and TensorFlow (Supervised Machine Learning in Python 2: Ensemble Methods) Convolutional Neural Networks in Python (Easy NLP) (Cluster Analysis and Unsupervised Machine Learning) Unsupervised Deep Learning (Hidden Markov Models) Recurrent Neural Networks in Python Artificial Intelligence: Reinforcement Learning in Python Natural Language Processing with Deep Learning in Python Who is the target audience? If you want to level up with deep learning, take this course. If you are a student or professional who wants to apply deep learning to time series or sequence data, take this course. If you want to learn about word embeddings and language modeling, take this course. If you want to improve the performance you got with Hidden Markov Models, take this course. If you’re interested the techniques that led to new developments in machine translation, take this course. If you have no idea about deep learning, don’t take this course, take the prerequisites.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值