Flink 状态设计理念(附源码)

1. 流处理的本质需求:必须"记忆"

1.1 无状态计算的严重局限

问题: 如果没有状态,流处理系统只能做"即时映射":

// ❌ 无状态:只能处理单条数据
dataStream.map(event -> event.getValue() * 2)

但真实业务需要"记忆力":

场景1:聚合统计(来自源码示例)

// ❌ 无状态:只能处理单条数据
dataStream.map(event -> event.getValue() * 2)

必须记住: 之前累加的总和

  • 计算过去1小时的订单总额
  • 统计每个用户的点击次数
  • 计算移动平均值

场景2:模式检测(状态机示例)
从 Flink 官方示例 StateMachineExample 中看到:

    private static class SummingReducer implements ReduceFunction<Tuple2<Long, Long>> {
   
   

        @Override
        public Tuple2<Long, Long> reduce(Tuple2<Long, Long> value1, Tuple2<Long, Long> value2) {
   
   
            return new Tuple2<>(value1.f0, value1.f1 + value2.f1);
        }
    }

必须记住: 每个实体的当前状态

  • 欺诈检测:检测"小额支付后立即大额支付"
  • 用户行为分析:连续3次登录失败
  • 设备监控:温度连续上升趋势

场景3:去重

// 检测非法的状态转换
public class StateMachineExample {
   
   
    // 每个地址维护一个状态机
    // 必须记住当前处于什么状态
    private ValueState<State> currentState;
    
    @Override
    public void flatMap(Event event, Collector<Alert> out) {
   
   
        State state = currentState.value();
        // 根据当前状态判断新事件是否合法
        State newState = state.transition(event);
        if (newState == State.InvalidTransition) {
   
   
            out.collect(new Alert(event));
        }
        currentState.update(newState);
    <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值