自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

hello.reader

按兴趣及研究,随便编写

  • 博客(1050)
  • 资源 (3)
  • 收藏
  • 关注

原创 Kafka 在 6 大典型用例的落地实践架构、参数与避坑清单

把 Kafka 用对地方,你会得到一条既能顶住流量、又能回溯历史,还能驱动实时决策的“数据中枢神经”。从消息解耦到点击流,从运维指标到日志聚合,再到流式计算与事件溯源,Kafka 提供了统一的抽象与工业级的可靠性。

2025-08-25 14:15:01 520

原创 一文吃透「损失函数」从最大似然到工程落地

本文系统梳理了机器学习中各类任务的损失函数选择与优化策略。从经验风险最小化出发,通过概率视角解析了回归(MSE、Huber)、分类(交叉熵、Focal)等基础损失的理论依据。进一步覆盖了排序学习、密集预测、生成模型等场景的专用损失函数,并提供了数值稳定、多任务加权等工程实践技巧。最后给出任务-损失函数的速查表,帮助开发者根据数据特性(噪声、不平衡等)选择匹配的损失函数,实现模型性能与训练稳定的平衡。

2025-08-25 11:50:38 657

原创 用一根“数据中枢神经”串起业务从事件流到 Apache Kafka

事件流是数字化时代的中枢神经,实时传递系统间的状态变化。Apache Kafka作为领先的事件流平台,具备发布订阅、持久存储和流处理三大核心能力,通过分布式架构实现高可用与弹性扩展。其核心概念包括事件(带键值的时间戳记录)、主题分区(保证局部有序)、生产消费解耦等。Kafka支持多语言客户端和五大API,适用于金融交易、物联网监控、实时分析等场景。实践时需注意主题建模、分区策略、可靠性设置和监控要点,避免将其误用为传统消息队列。典型应用包含实时风险监控(Go示例)和流式聚合计算(Kafka Streams示

2025-08-25 10:31:34 432

原创 Elasticsearch Ruby 客户端故障排查实战指南

(注意 Ruby 版本要求:Faraday 2 需要 Ruby ≥ 2.6;A:使用支持 Keep-Alive 的适配器(Patron/Typhoeus),避免频繁建连。A:Ruby 客户端会在错误元数据打印时做常见敏感字段替换;自己日志也应避免输出凭据。,执行打印出的 cURL;cURL 成功多半是客户端配置问题。遇到“偶发超时/大响应/代理穿透”等问题时,可以在。打印出来,方便你独立验证问题到底出在。确认连接池能轮询到健康节点。性能与稳定性都更好,推荐。对应适配器 gem(如。最省心的第一步:打开。

2025-08-24 16:02:28 768

原创 在 Ruby 客户端里用 ES|QL

把这三者配起来,你就能在 Ruby 环境下把 ES|QL 用得又快又稳、又安全又优雅。这个 gem 用 Ruby 风格链式构建 ES|QL 语句。elasticsearch-ruby,本质是一个。直接面对 Ruby 类型,而不是原始字符串。、自己做映射/导出(如 CSV)的场景。ES|QL 支持把不可信数据作为。写好 query 后可直接喂给。,从而避免代码注入风险。

2025-08-24 15:59:39 546

原创 Elasticsearch Ruby 客户端 Bulk & Scroll Helpers 实战指南

一致性好、资源占用小且更现代。Ruby 客户端直接调 Search API 即可(不依赖 ScrollHelper)。Ruby 的 IO 多路复用对 HTTP 写 ES 帮助很大(GIL 不是瓶颈)。(见第 4 节),Scroll 更适合离线导出等一次性任务。(分块 parse 后分批 ingest),避免一次性。过大容易 413/网络重传,过小则握手开销高。:Bulk 可能“部分成功、部分失败”,需要解析。:导出/遍历大结果集的历史方案。:用业务主键或内容哈希充当。小贴士(体量经验):单批。

2025-08-23 23:20:29 792 1

原创 Elasticsearch Persistence(elasticsearch-persistence)仓储模式实战

elasticsearch-persistence 为 Ruby 域对象提供持久化层,主打 Repository 模式:你定义一个“仓储类”,实现保存、查找、搜索、删除,并可在该类上配置索引名、映射与 settings;6.0 之前还提供过 ActiveRecord 风格,但后来以 Repository 模式为主。

2025-08-23 23:16:23 454

原创 一文吃透训练误差 vs. 泛化误差

Train/Val/Test = 8/1/1(小数据用 K 折)。切(Train ≤ Val ≤ Test),避免“穿越”。:用最简单的回归任务展示“复杂度越高→越容易过拟合”。拟合 scaler,再作用于 Val/Test。:扩大样本覆盖面(新时间段/新人群/新设备)。经验法则:看到 Val 指标开始反弹,就是“若是多标签/回归,换损失函数即可。二者之间的差距,就是模型能否。而你在训练时优化的却是。:修正错标、剔除异常。:重采样/加权损失。

2025-08-22 13:59:08 806

原创 Elasticsearch Rails 实战全指南(elasticsearch-rails / elasticsearch-model)

复杂示例(Concern 抽取、复杂映射、自定义序列化、Facet/Suggest、Sidekiq 异步、导入 NYT 示例数据)构建可观测、可扩展的全文检索能力:用显式映射保障数据契约,用 Rake/模板提升启动速度,用异步与别名切换保障生产可用。声明映射,控制字段类型/分词器,避免“动态映射”带来的意外类型漂移。若你维护历史项目,请对照表选择对应分支或升级路径。会在 save/destroy 时自动更新 ES。:ES 8.x 已不再使用自定义 type,统一。当需要修改字段类型/分析器时,必须。

2025-08-22 13:38:29 1009

原创 Elasticsearch Rails 集成(elasticsearch-model / ActiveRecord)

elasticsearch-rails 仓库提供 Rails 集成,其中的 elasticsearch-model 负责把 ES 能力“混入”模型,支持 ActiveRecord/Mongoid、结果包装、分页适配与便捷方法(search / mapping / import 等)。你通常在 Gemfile 里添加 elasticsearch-rails 即可。(GitHub, Elastic)

2025-08-22 13:25:54 590

原创 一文吃透 Transformer从架构到落地

Transformer通过注意力机制克服了RNN/CNN在长序列建模和并行性上的瓶颈,其核心架构包括编码器和解码器。编码器采用多头自注意力+前馈网络,解码器增加因果掩蔽和跨注意力模块,确保自回归生成。关键组件包括:残差连接和层归一化稳定训练,位置编码注入顺序信息,以及掩蔽机制处理填充和未来信息泄露。PyTorch示例展示了完整的Seq2Seq实现,包含位置编码、掩蔽逻辑和训练流程,可作为Transformer应用的开发骨架。

2025-08-22 13:14:09 962

原创 Elasticsearch Ruby 客户端elasticsearch / elasticsearch-api

默认通过MultiJson进行序列化,你也可以替换为自定义 JSON 库(需实现load/dump接口);亦可用Jbuilder生成复杂查询的字符串后传入body。# 自定义序列化器(示例)# Jbuilder 构建查询endendendend。

2025-08-21 11:41:12 921

原创 Metasploit 技术全指南

Metasploit 是业界最常用的开源渗透测试平台,核心是 Metasploit Framework(MSF)。它提供了统一的模块化框架、控制台()、Payload 体系(含 Meterpreter)、数据库与 API,帮助你完成漏洞验证、信息收集、后渗透验证与报告支撑等工作。官方还提供商业版 Metasploit Pro 的图形界面与项目管理能力。(docs.rapid7.com)最常用的交互界面是 MSFconsole,可在其中搜索模块、配置参数、执行与收集数据。(docs.rapid7.com)模块

2025-08-21 11:30:20 890

原创 VMP(虚拟机保护)原理、工程落地、性能权衡与玩具实现

VMP(Virtual Machine Protection,虚拟机保护)是一类将原生指令语义迁移到自定义字节码 + 解释器上运行的高级混淆/保护技术。与传统“加壳/混淆”相比,VMP 通过改写执行语义与控制流,使静态、动态分析成本显著提升;代价是性能开销与工程复杂度上升。本文系统梳理 VMP 的核心机制、架构、威胁模型、工程化落地流程、性能评估方法、常见坑位,并给出一个可运行的 Go 语言玩具 VMP(自定义字节码 + 解释器 + 分支循环 + 寄存器/栈),帮助读者从 0 到 1 搭建概念样例与实验基线

2025-08-21 09:48:05 1221

原创 一文读懂 RoPE(旋转位置编码)把“位置信息”变成一次优雅的旋转

RoPE(Rotary Position Embedding)是一种通过旋转编码位置信息的方法,将相对位置差自然地嵌入注意力机制中。它将d维向量拆分为d/2个二维向量对,每个对视为微型表盘指针,不同通道以不同角频率旋转。查询Q和键K在相同位置旋转相同角度,点积仅与相对位置差有关,无需额外参数。关键超参base控制频率分布,调大可支持更长上下文。RoPE仅需对Q和K应用,V不需旋转。实现时需确保维度为偶数,并正确广播位置索引。该方法高效简洁,适用于多头注意力架构。

2025-08-20 11:39:51 1168

原创 用好 Elasticsearch Ruby 传输层elastic-transport

elastic-transport 是 Elasticsearch 官方 Ruby 生态中的低层传输库,为 elasticsearch Ruby 客户端提供连接、多节点轮询、重试、日志/追踪、序列化与嗅探等基础能力。本文从安装与快速上手开始,系统梳理 Faraday 1.x/2.x 的适配器差异、如何启用持久连接(keep-alive)、如何自定义 Transport/Faraday、如何在运行时注入传输,以及库的内部架构与常见踩坑,帮你把“传输层”这块地基打牢。

2025-08-20 09:46:07 837

原创 Elasticsearch Ruby 客户端安装与版本兼容指南

本文介绍了Elasticsearch Ruby客户端的安装方法和版本兼容策略。安装支持直接通过Rubygems或Bundler方式,可指定具体版本或主版本范围。在版本兼容方面,建议客户端与Elasticsearch服务器保持相同主版本,并尽量同步小版本以获得完整功能支持。文章还提供了版本对照表,并强调生产环境应锁定主版本,同时确保使用仍在维护的Ruby版本。

2025-08-20 08:23:50 405

原创 自注意力一文打尽Q/K/V 同源、并行与位置编码,外加一份可运行代码

本文介绍了自注意力机制的核心原理与实现方法。自注意力通过计算查询、键、值的相似度来分配权重,实现任意位置间的直接交互(O(n²)复杂度)。针对位置编码,介绍了绝对位置(正弦/可学习)和相对位置(RoPE/ALiBi)两类方法,其中RoPE通过旋转编码位置关系,ALiBi则施加线性距离惩罚。为处理长序列,提出了滑窗、稀疏注意力、低秩近似、FlashAttention优化等技术方案,并给出了不同场景下的选型建议。最后提供了一份PyTorch最小实现代码,包含三种位置编码策略(正弦、RoPE、ALiBi)和因果掩

2025-08-19 11:20:31 924

原创 多头注意力(Multi-Head Attention)零依赖 NumPy 与“安全版”PyTorch

为什么要多头:单头注意力在一个子空间里学习相关性,表达力受限;多头把 Q,K,VQ,K,V 分别映射到 hh 个子空间,每个头独立做注意力,最后再融合,因此能“看见”更多互补模式。并行本质:把 head 变成显式维度 [B, H, N, Dh],用一次 matmul/SDPA 并行完成所有头的计算。实现要点:正确的 view/transpose/contiguous;掩码统一用加性 -inf;注意形状广播与数值稳定。落地:本文给出两个单文件实现(可直接复制运行)+ 常见坑排查 + 性能

2025-08-19 07:30:00 549

原创 一篇把“转置”讲透从线性代数到工程实现

本文系统梳理了矩阵转置的核心概念与应用。从定义与性质出发,介绍了转置在不同场景下的作用,包括对称/厄米矩阵、正交/酉矩阵的几何意义,以及在机器学习(最小二乘法、PCA、反向传播)、图论等领域的应用。文章还深入探讨了工程实现中的关键问题,如内存布局优化、稀疏矩阵处理和大矩阵转置的缓存友好策略。最后通过Python和Go的代码示例,展示了稠密和稀疏矩阵转置的具体实现方法与实践建议。全文以"定义→性质→应用→实现"为主线,全面解析转置这一基础而重要的数学运算。

2025-08-18 13:08:57 670

原创 一文读懂 BLIP统一的视觉-语言理解与生成

BLIP是一种统一的多模态模型,既能理解图像(如检索、问答)又能生成描述。它通过自举式数据清洗,结合网络图文的大规模性和高质量监督,显著提升了性能。BLIP采用ViT-L视觉编码器和文本编码/解码器架构,支持图像文本对比(ITC)、匹配(ITM)和描述生成(LM)三种训练目标。实验显示,BLIP在图文检索、图像描述和VQA任务上均有显著提升。使用Hugging Face的transformers库可快速部署BLIP模型,支持CPU/GPU、半精度和批量处理,通过条件式或无条件方式生成图像描述。BLIP的&q

2025-08-18 10:16:43 855

原创 Candle用 Rust 打造“小而快”的机器学习栈

Candle 是 Hugging Face 推出的 Rust 机器学习框架,主打轻量、高性能与易部署。它既能在浏览器里跑 Whisper/T5/SegAnything,也能在服务器上跑 LLaMA、Stable Diffusion 和多卡 CUDA;既支持 safetensors/npz/ggml 等权重格式,也提供 FlashAttention v2、量化与 wasm。本文面向工程落地视角,讲清楚:为什么选 Candle、如何快速起步、典型应用场景、性能与部署要点、常见坑与对比选择。

2025-08-18 09:32:56 1249

原创 Elasticsearch 用 `collapse` 做结果去重与分组展示(含 inner\_hits、分页、重排、二级折叠)

Elasticsearch 折叠查询(Collapse)功能摘要:该功能用于按指定字段去重并返回每组Top结果,支持单值keyword或数值类型字段。基础用法通过collapse.field指定分组字段,配合sort选择组代表。可展开每组结果(inner_hits),支持多视图展示,但需注意性能开销。分页需使用search_after且排序字段必须与分组字段相同。支持与重排(rescore)配合使用,但仅作用于组代表文档。使用限制包括:不能与scroll共用、字段需开启doc_values、分页特殊性等。性

2025-08-17 09:14:56 688

原创 DINOv3 技术综述与实战指南(含模型获取、推理、训练与评测)

DINOv3 是 Meta FAIR 提出的新一代视觉基础模型家族,强调“高质量稠密特征(dense features)”与广谱适用性:无需或仅需极少微调,即可在分类、目标检测、语义分割、深度估计、匹配/跟踪等任务上取得强劲表现。论文展示了以某一图像 patch 为中心,和全图其它 patch 的余弦相似度热力图,直观体现其语义对齐与密集表征能力。

2025-08-17 09:01:54 2334 16

原创 Elasticsearch「kNN Retriever」把向量检索装进一条 \_search 管线

kNN retriever是Elasticsearch Retriever框架中的首阶段召回器,用于对向量字段进行近邻搜索并返回Top-K文档。它支持多种检索策略组合,通过单次API调用完成复杂检索流程。核心参数包括field(向量字段)、query_vector/query_vector_builder(查询向量)、k(返回数量)和num_candidates(候选集大小)。优化建议包括:合理设置近似索引参数、优先使用过滤条件缩小检索范围、调整相似度阈值控制噪声。对于量化向量场景,可使用rescore_v

2025-08-17 08:53:25 1126

原创 Top-k / Top-n 算法 概念、选型与生产级实现

Top-n(含并列)在报表与榜单中更常见。一次性离线且追求性能选。,与第 n 名同分的一并返回):工程语义上,Top-n 强调。(用于并列稳定性)。

2025-08-17 08:45:17 754

原创 图注意力网络(GAT)从直觉到工程落地

图注意力网络(Graph Attention Network, GAT)通过可学习的注意力权重替代“邻居平均”,在异质、噪声或稀疏的图上更具鲁棒性与可解释性。本文从 GCN→GAT 的动机入手,推导核心公式,剖析复杂度与常见变体(GATv2、边注意力等),给出可运行的 PyG 代码、大图训练策略、注意力可视化与调参模板,帮助你在生产业务中高效落地。

2025-08-15 13:40:23 856

原创 用一篇文章彻底搞懂 Bahdanau(加性)从动机、公式到可直接跑的 PyTorch 代码

本文介绍了注意力机制在Seq2Seq模型中的应用,重点分析了Bahdanau注意力(加性注意力)的数学原理与实现方法。传统Seq2Seq模型仅使用编码器最终隐状态作为上下文向量,导致长句信息丢失。Bahdanau注意力通过查询-键值匹配机制,使解码器在生成每个词元时动态关注源序列中最相关的片段。文章详细给出了注意力打分的数学公式,包括对齐分数计算、归一化处理以及上下文向量的加权求和过程。最后提供了完整的PyTorch实现方案,包含双向GRU编码器、注意力解码器模块,并支持padding mask处理和Tea

2025-08-15 07:00:00 1480

原创 “混搭”大模型蓝图(通用而强)局部注意力 × SSM × 检索 × 工具 × Entmax 稀疏融合

这套“局部注意力 × SSM × 检索 × 工具 × Entmax”的混搭蓝图,本质是把表征、记忆、知识、计算、选择让近场和远程不再二选一;让事实与计算外包到最擅长的系统;用稀疏门控让模型学会克制与选择。在实践中,它能以更低复杂度与更强可控性支撑更长的上下文与更复杂的任务,成为“通用而强”的默认基线。

2025-08-14 10:00:00 931

原创 Elasticsearch JS 客户端的 Transport 请求管道、错误处理与嗅探

/ 覆写请求入口// 在这里注入:统一 Header / 链路追踪 / 限流 / 审计 / 指标…// 例如:给所有请求加上 X-Opaque-Id${const {// 覆写请求入口 request(params , options) {// 在这里注入:统一 Header / 链路追踪 / 限流 / 审计 / 指标… // 例如:给所有请求加上 X-Opaque-Id options = options || {

2025-08-14 09:37:10 522

原创 SpaceFold一种受物理启发的长上下文“折叠空间”注意力机制(个人假设理论)

标准注意力在序列长度LLL上具有OL2O(L^2)OL2的时间与内存复杂度,难以覆盖百万级上下文与低延迟流式场景。本文提出:借鉴物理学中的快速多极法(FMM)与多重网格/重整化思想,将远距离交互折叠到少量“锚点”(远场摘要)上,仅在局部邻域内做精算(近场精算);并结合可学习坐标扭曲与双曲几何位置编码,在表示空间中把“语义上远但相关”的 token“拉近”。在推理阶段,SFA 的时间/显存复杂度分别约为OLlog⁡LOLlogL(或OLLOLL​。

2025-08-14 07:30:00 619

原创 一文读懂注意力机制从上手案例到工程实现

线性层用 xavier/kaiming;注意 LayerNorm 放置(Pre-LN 更稳定)。:FP16/BF16 要注意溢出;Causal mask 在解码器里必须启用。:常见 8、12、16。过多会增常数开销且每头维度过小。,是现代 Transformer 的要害。差异只在于“怎么打分”。想象你在看一段英文句子,想翻译其中“维度相同(通常通过线性投影满足)。来自同一序列(例如同一句话)。来自编码端(经典翻译器结构)。,并把相关信息“聚合”成答案。更相似,模型更“注意”到。你会下意识地在上下文里。

2025-08-14 07:15:00 406

原创 用好 Elasticsearch JS OpenTelemetry、事件总线、关联 ID 与 X-Opaque-Id 全攻略

options.openTelemetry = { enabled: false } // 全局禁用})// 必须“同步返回”// 典型做法:从你的 trace context / logger 里取一个短 ID${cloud : {

2025-08-14 07:00:00 599

原创 用 mock 把 ES 单元测试@elastic/elasticsearch-mock 上手

把 Connection 换成 mock,你的测试就从“重集成”回到“轻单元”,速度与稳定性双赢;宽松 + 严格匹配动态路径/通配失败注入,能覆盖绝大多数线上分支;单测用 mock,回归再配一小撮 Docker 集成测试做端到端兜底,是性价比最高的组合。如果你愿意,我可以把上面 AVA/Jest/TS 的样例整理成一个examples/目录(含、脚手架与说明),你直接npm test就能跑。需要我打包一下吗?

2025-08-13 13:32:54 1069

原创 Nadaraya–Watson 就是最朴素的注意力层

NW 核回归 = 注意力加权平均的白盒范式:权重由“查询–键”的核相似度(或点积+偏置)决定;非参数简洁可解释;带参数表达力强、与 Transformer 一步到位;结合kNN 截断/索引/降维,能在大规模场景下既稳又快。

2025-08-13 09:13:38 737

原创 Elasticsearch JS 客户端子客户端(Child Client)实践指南

共享连接池的“轻量克隆”,非常适合多租户、多业务线的默认配置隔离。不改池级别配置任意一端 close 全家关。配合,就能在性能不打折的前提下实现清晰的隔离与可观测。

2025-08-12 13:41:47 363

原创 Elasticsearch JS 自定义 ConnectionPool / Connection / Serializer、敏感信息脱敏与 v8 平滑迁移

serialize// 例如:处理 BigInt、安全过滤、稳定键序})实战建议Bulk 写入走,避免额外复制;控制行尾换行与内存峰值。对查询串(qserialize)可做白名单过滤与编码规范化,防注入/超长。热路径上注意逃逸创建与字符串拼接成本,必要时用生成器/缓冲区。

2025-08-12 13:28:05 936

原创 Elasticsearch JavaScript 客户端「基础配置」全指南(Node/TS)

本文介绍了 Elasticsearch JavaScript 客户端的关键配置选项,包括连接设置、认证方式、稳定性参数、嗅探机制、节点管理策略等。重点涵盖了最小可用配置、多种认证方案、超时与重试设置、节点筛选逻辑、安全防护措施等内容。针对不同使用场景,如本地开发、多节点集群和 Elastic Cloud Serverless,提供了典型配置示例。文章强调了对嗅探功能的谨慎使用,并详细说明了影响客户端行为的各项参数及其相互关系,为开发者提供了全面的配置指导。

2025-08-12 13:07:53 1112

原创 Elasticsearch Node.js 客户端连接指南(Connecting)

默认情况下,Elasticsearch 启动时会开启安全特性(认证与 TLS)。Elastic Cloud 的节点位于负载均衡器之后,Cloud 会自动处理节点发现与连接,你无需干预。客户端覆盖 Elasticsearch 的所有公开 API,方法签名与 REST 一致。,以便复用连接、启用后台能力(如 sniffing),并提升性能。在 Docker 中运行时,请参见官方文档以获取该证书。后,客户端会调整若干默认选项以更适配无服务器环境。需要主动关闭当前客户端管理的所有连接时,调用。

2025-08-12 12:56:21 1127

原创 注意力机制(Attention)从直觉到工程—以「动物世界报道」为例

注意力(Attention)在现代深度学习中的作用可概括为:基于目标的动态加权汇聚。它以查询(Q)表示当前目标/意图,以键(K)描述候选信息的“可匹配性”,以值(V)承载真正要汇聚的内容,通过 softmax(QKᵀ/√d + mask) 得到权重,再对 V 加权求和。本文首先以“帮我写一篇关于动物世界的报道”为贯穿案例,解释注意力如何让模型选对信息、写对风格、排好结构;继而系统讲解注意力的数学形式、Self/Cross/Multi-Head、掩蔽与数值稳定、位置编码、可视化方法,以及从零实现的 NumPy

2025-08-11 17:24:14 883

建议一个名称为 FusionDepthSR,即“融合深度超分辨网络” 这个名称突出了项目核心:利用 RGB 图像引导,实现深度图的超分辨率重建,并通过多尺度与反馈机制融合特征,提升重建效果

项目概述 本项目是基于 PyTorch 的超分辨率及深度图增强系统,主要目标是利用 RGB 图像对深度图进行高质量超分辨率重建。项目涵盖了数据预处理、网络模型构建、训练、测试以及离线评估等完整的深度学习流水线。 PMBANet(pmpanet.py) PMBANet 是本项目的核心网络,专门设计用于深度图超分任务。网络主要由以下部分构成: 多膨胀率模块:利用不同膨胀率的卷积捕捉多尺度特征,同时通过动态调整的上采样模块实现不同倍数的分辨率提升。 反馈块:包含一个进行上采样的反馈块和一个保持分辨率的反馈块,通过反馈机制提升细节重建能力。 通道注意力机制:对融合后的特征图进行通道加权,突出重要特征,从而进一步提升重建质量。 初始卷积:分别对 RGB 图和深度图进行特征提取,并在后续阶段进行特征对齐与融合。 基础网络组件(base_networks.py) 提供了构建 PMBANet 的各个基础模块,包括常用的卷积块、转置卷积块(支持根据上采样倍数动态堆叠层数)、膨胀卷积块、以及各种多膨胀率模块和反馈块,这些组件实现了模型中多尺度、反馈和注意力机制等关键功能。

2025-03-08

Middlebury2014 & RGB TRAIN 深度超分数据集

本数据集主要整合了 Middlebury2014 以及自建的 RGB 训练集,用于深度图像超分辨率及相关视觉任务研究。其中,Middlebury2014 数据集体量较大,包含高质量的立体对、深度图及配套标注信息,适合进行深度估计、立体匹配与超分辨率等多种实验;RGB TRAIN 则为针对深度超分所准备的配套 RGB 数据,可与深度图进行联合训练或引导。整体数据规模在数 GB 级别,覆盖多样场景和视角,能够支持深度学习模型在深度重建、融合超分和立体匹配等方向的深入研究与评测。

2025-03-08

`echo` 命令是 Unix 和 Linux 系统中的基础命令

echo命令

2024-10-14

axure web元件库.zip

web前后端元件库 适用于Axure RP 8, 9, 10 它是设计原型必备元件库,可以帮助您快速设计原型 精品元件库,非拼凑,元件库十分丰富,完全够用 支持element ui和ant design

2024-05-17

Manticore Search号称Elasticsearch快15倍得全文检索引擎

Manticore Search windows安装包

2024-03-08

milvus_manifest.yaml

milvus_manifest

2024-03-06

dlib-19.24.2.tar.gz

dlib-19.24.2.tar

2024-03-06

Wav2Vec2模型文件

Wav2Vec2是由Facebook AI Research(FAIR)开发的语音识别模型,旨在从原始语音波形中学习语音表示。与传统方法相比,它采用了自监督学习技术,无需人工标注的转录即可进行训练。Wav2Vec2采用了改进的架构和对比学习方法,使其能够更好地理解语音片段的上下文和特征,从而提高了语音识别的准确性和鲁棒性。该模型还支持多语言,并可以通过微调进行定制以适应不同的任务和数据集。总的来说,Wav2Vec2代表了语音识别领域的前沿技术,具有高效、准确和通用的特点。

2024-02-29

arcface模型文件

ArcFace 模型文件通常是指包含了已经训练好的 ArcFace 模型参数的文件,这些参数可以用于进行人脸识别任务。由于 ArcFace 模型通常是基于深度学习技术构建的神经网络模型,因此模型文件可能是各种深度学习框架(如TensorFlow、PyTorch、MXNet等)所支持的格式。

2024-02-28

Resnet152模型文件基于2048维度的向量

这个模型实际上是在创建一个名为ImageFeatureExtractor的神经网络模型,这个模型的任务是从图像中提取特征。我们使用了一个预训练好的ResNet-152模型来帮助我们完成这个任务,ResNet-152是一个非常强大的图像识别模型。 我们稍微定制了这个模型,将它的最后一层全连接层替换成了一个新的线性层,这样我们就能够得到一个2048维度的特征向量作为输出,而不是原始模型的分类结果。这种做法可以让我们在后续的任务中更方便地处理特征。 然后,我们在代码中生成了一个随机的图像作为输入,然后将这个输入送入模型,得到了一个2048维度的特征向量作为输出。 我们使用了PyTorch的torch.jit.trace方法,将这个模型转化成了一个Torch脚本,并将其保存到了一个文件中,这样我们就可以在其他地方轻松地加载和使用这个模型了。

2024-02-28

RediSearch编译安装(一)

redisearch编译包

2023-08-25

RedisJson编译安装(一)

RedisJson编译so文件包

2023-08-25

vue3版openlayers基础脚手架

这是一个使用vue3搭建的二维地图引起,基于openlayers,使用ts进行编码

2023-08-24

cesium for unreal

是一款用ue5编写得cesium gis程序demo

2023-07-30

使用wpf写得3D gis 基础框架

这是一款使用微软wpf编写得 3d gis基础框架程序,使用得是c#语言

2023-07-30

obj模型转3dtiles和gltf工具模型

这一一款将obj模型转化为3dtiles和gltf工具模型

2023-07-30

fbx模型转化gltf工具

这是一款将fbx模型转化成gltf得工具,希望可以帮助到大家

2023-07-30

基于MindAR项目程序

基于前端技术MindAR实现得AR项目程序。里面内嵌特征识别

2023-07-28

Three.js 三维模型(一)

本项目的js、css、model文件

2023-07-10

Flink CDC MySQL同步Elasticsearch

构建好的flink-sql-connector-mysql-cdc-2.5版本

2023-07-06

Flink CDC MySQL同步MySQL(一)

jdbc

2023-07-06

Flink CDC MySQL同步MySQL(一)

jdbc

2023-07-06

cesium-vue3框架

使用vue3搭建集成的现成框架,可直接进行编码开发

2022-02-24

cesium3D gis开发框架,已经开发了gis基层功能模块

cesium3D gis开发框架,已经开发了gis基层功能模块

2022-03-02

three.js. 3D机房项目

使用three.js开发的3D机房项目

2021-09-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除