主成分分析(PCA)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/mn_kw/article/details/79970182
PCA(principal components analysis)即主成分分析技术,又称主分量分析。主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
在统计学中,主成分分析PCA是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征.这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面.但是,这也不是一定的,要视具体应用而定.
PCA的重要应用
1. 这个技术通过降维的方式,然后我们应用到人脸识别

      2.去噪 

      3.特征提取

阅读更多
换一批

没有更多推荐了,返回首页