题目描述
小明很喜欢玩射击游戏。这周末,他完成了数据结构作业之后,又来到了射击娱乐场。他从老板那租了一把步枪和装有N发子弹的弹夹。注意:所有的子弹都从枪口上膛。在射击的过程中,小明每次都有两种选择:从弹夹中取出一颗子弹上膛,或者打一发子弹出去。恰巧,这周二,小明刚上了数据结构中《栈》那一章,于是,他想通过“栈”的数据结构来算出究竟有多少种不同的子弹打出顺序。假设N颗子弹的编号为1,2,…,N。子弹从弹夹中取出的顺序也是从1到N。你可以帮小明解决这个问题吗?
输入格式
可能有多个测试输入,第一行给出总共的测试输入的个数。
对于每个测试输入,只有一个整数N。
输出格式
输出一个整数,即所有不同序列的总数目。
样例输入
1
3
样例输出
5
1.解题思路
首先,将桟自底向上依次标记为位置1,2,3,4,5……
假设现在有5颗子弹,要计算有多少种顺序。利用递推思想,就要在4颗子弹的基础上考虑。
不难发现当第4颗子弹的位置确定之后,第五颗子弹位置要么在第四颗子弹的前面(包括第4颗子弹的位置),要么在它的后一位。
设第4颗子弹的位置P4,第五颗子弹位置P5
P4=1,P5=1,2
P4=2,P5=1,2,3
P4=3,P5=1,2,3,4
P4=4,P5=1,2,3,4,5
即P4确定后,P5=1… P4+1。
所以,应该计算出第四颗子弹在位置1-4每个位置时有多少种顺序,这就是解决这个问题的关键。
#include<iostream>
#include<cstring>
using namespace std;
int s[100][100];//s[i][j]表示第i颗子弹在位置j时的顺序数
int main()
{
int T;
cin>>T;
while(T--)
{
int n;
cin>>n;
memset(s,0,sizeof(s));
s[1][1]=1;
int i,j,k;
for(k=2;k<=n;k++)
{
for(i=1;i<=k-1;i++)//前一个子弹所处的位置
{
for(j=1;j<=i+1;j++)//更新当前子弹的情况
{
s[k][j]+=s[k-1][i];
}
}
}
int sum;
for(sum=0,i=1;i<=n;i++)
{
sum+=s[n][i];
}
cout <<sum<<endl;
}
return 0;
}