SOJ 射击游戏递推解法

题目描述

小明很喜欢玩射击游戏。这周末,他完成了数据结构作业之后,又来到了射击娱乐场。他从老板那租了一把步枪和装有N发子弹的弹夹。注意:所有的子弹都从枪口上膛。在射击的过程中,小明每次都有两种选择:从弹夹中取出一颗子弹上膛,或者打一发子弹出去。恰巧,这周二,小明刚上了数据结构中《栈》那一章,于是,他想通过“栈”的数据结构来算出究竟有多少种不同的子弹打出顺序。假设N颗子弹的编号为1,2,…,N。子弹从弹夹中取出的顺序也是从1到N。你可以帮小明解决这个问题吗?

输入格式

可能有多个测试输入,第一行给出总共的测试输入的个数。

对于每个测试输入,只有一个整数N。

输出格式

输出一个整数,即所有不同序列的总数目。

样例输入

1
3

样例输出

5
1.解题思路

首先,将桟自底向上依次标记为位置1,2,3,4,5……

假设现在有5颗子弹,要计算有多少种顺序。利用递推思想,就要在4颗子弹的基础上考虑。

不难发现当第4颗子弹的位置确定之后,第五颗子弹位置要么在第四颗子弹的前面(包括第4颗子弹的位置),要么在它的后一位。

设第4颗子弹的位置P4,第五颗子弹位置P5

P4=1,P5=1,2             

P4=2,P5=1,2,3           

P4=3,P5=1,2,3,4         

P4=4,P5=1,2,3,4,5       

即P4确定后,P5=1… P4+1。

所以,应该计算出第四颗子弹在位置1-4每个位置时有多少种顺序,这就是解决这个问题的关键。

#include<iostream>
#include<cstring>
using namespace std;

int s[100][100];//s[i][j]表示第i颗子弹在位置j时的顺序数

int main()
{
	int T;
	cin>>T;
	while(T--)
	{
	
		int n;
		cin>>n;
		
		memset(s,0,sizeof(s));
		s[1][1]=1;
		int i,j,k;
		for(k=2;k<=n;k++)
		{
			for(i=1;i<=k-1;i++)//前一个子弹所处的位置 
			{
				for(j=1;j<=i+1;j++)//更新当前子弹的情况 
				{
					s[k][j]+=s[k-1][i];
				}
			}
		}
		int sum;
		for(sum=0,i=1;i<=n;i++)
		{
			sum+=s[n][i];
		}
		cout <<sum<<endl;
	}
	return 0;
}








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值