本文从以下三个模块解读DeepSeek专利CN109165093A:专利技术解析模块、商业价值与应用场景模块、专利布局与竞争分析模块。
一、专利技术解析
1. 技术背景
该专利主要解决了云计算环境中计算节点资源分配效率低下的问题。具体来说,传统的计算节点资源分配通常是静态的、单向的,容易导致资源过载或资源闲置,尤其是在深度学习等需要大量计算资源的任务中,资源分配的不合理会显著影响任务执行的效率和用户体验。该专利通过动态资源分配机制,优化了计算节点的资源利用率,提升了任务执行的响应速度和系统的整体效率。
2. 核心创新点
该专利的核心创新点包括:
- 任务资源预估机制:通过历史任务资源分配信息,预估新任务所需的计算资源,确保资源分配的合理性。
- 动态资源再分配:根据计算节点的实时状态(如CPU、内存、磁盘、I/O、网络等利用率),动态调整资源分配,避免资源过载或闲置。
- 异常任务处理:当任务运行异常时,系统能够主动结束异常任务并释放资源,避免资源浪费。
- 历史数据反馈机制:每次任务执行后的资源分配信息会被记录并用于下一次任务的资源预估,形成闭环优化。
3. 技术实现
该专利通过以下技术手段实现了上述创新:
- 任务资源预估模块:根据用户提交的任务描述和选择参数,提取任务向量,并通过聚类算法(如KNN)找到与历史任务相似的任务记录,预估新任务所需的资源。如果没有相似的历史记录,则通过线性回归拟合历史数据,预估资源需求。
- 计算节点监控模块:定时采集计算节点的状态信息(如CPU、内存、磁盘、I/O、网络等利用率),并与预设的预警阈值进行比较。如果资源利用率超过阈值,系统会判断任务是否异常,并根据情况进行资源再分配或任务终止。
- 动态资源调用:当计算节点资源利用率超过预警阈值时,系统会根据最新的节点状态重新分配资源,确保任务能够继续高效运行。
- 历史数据存储与反馈:每次任务执行后的资源分配信息会被存储在历史资源分配信息表中,用于后续任务的资源预估,形成持续优化的闭环。
4. 性能提升
该专利带来了以下性能提升:
- 资源利用率提升:通过动态资源分配和再分配机制,系统能够更高效地利用计算节点资源,避免了资源闲置或过载的情况。
- 任务响应速度提升:通过任务资源预估机制,系统能够快速为新任务分配合理的资源,减少了任务启动的等待时间。
- 系统稳定性增强:通过异常任务处理和动态资源调用,系统能够有效应对资源过载或任务异常的情况,提升了系统的稳定性和可靠性。
- 成本降低:通过优化资源分配,减少了不必要的资源浪费,降低了云计算环境的运营成本。
- 用户体验改善:用户任务的执行效率提升,异常任务能够被及时处理,提升了用户的使用体验。
总结
该专利通过任务资源预估、动态资源分配和异常任务处理等创新技术,有效解决了云计算环境中计算节点资源分配效率低下的问题,显著提升了资源利用率、任务响应速度和系统稳定性,同时降低了运营成本,改善了用户体验。
二、商业价值与应用场景
1. 成本效益
该专利通过优化计算节点资源的分配和利用,显著降低了企业在AI训练和推理任务中的成本。具体体现在以下几个方面:
- 资源利用率提升:通过动态资源分配和再分配机制,系统能够更高效地利用计算节点资源,避免了资源闲置或过载的情况。这意味着企业可以在相同的硬件资源下运行更多的任务,减少了硬件采购和维护成本。
- 任务响应速度提升:通过任务资源预估机制,系统能够快速为新任务分配合理的资源,减少了任务启动的等待时间。这提高了任务执行的效率,缩短了项目周期,从而降低了时间成本。
- 异常任务处理:通过及时检测和处理异常任务,系统能够避免资源浪费,减少因任务失败导致的重新计算和资源消耗。
- 历史数据反馈机制:通过历史数据的反馈和优化,系统能够不断改进资源分配的准确性,进一步降低资源浪费和成本。
2. 行业应用
该专利适用于多个需要大规模计算资源的行业,尤其是在AI和深度学习领域。以下是一些典型的应用行业:
- 金融:在金融行业中,AI被广泛应用于风险评估、欺诈检测、高频交易等场景。该专利可以帮助金融机构更高效地利用计算资源,提升模型训练和推理的速度,从而加快决策过程。
- 医疗:在医疗行业中,AI被用于医学影像分析、基因组学、药物研发等领域。该专利可以帮助医疗机构优化计算资源的分配,加速数据处理和模型训练,提高诊断和治疗的效率。
- 自动驾驶:自动驾驶技术需要大量的计算资源来进行实时数据处理和模型训练。该专利可以帮助自动驾驶公司更高效地利用计算资源,提升模型训练和推理的速度,从而加快自动驾驶技术的研发和部署。
- 电商和推荐系统:电商平台和推荐系统需要处理大量的用户数据和实时推荐请求。该专利可以帮助这些平台优化计算资源的分配,提升推荐算法的训练和推理效率,从而提高用户体验和销售额。
- 智能制造:在智能制造领域,AI被用于生产流程优化、质量控制、预测性维护等场景。该专利可以帮助制造企业更高效地利用计算资源,提升模型训练和推理的速度,从而优化生产流程和降低成本。
3. 案例参考
虽然专利文件中没有提供具体的实际应用案例,但可以推测该专利的技术在以下场景中具有潜在的应用价值:
- 云计算服务提供商:如AWS、Google Cloud、Azure等云计算服务提供商可以通过该专利技术优化其计算资源的分配和利用,提高资源利用率,降低运营成本,从而为客户提供更具竞争力的服务。
- AI研究机构:如DeepMind、OpenAI等AI研究机构可以通过该专利技术优化其大规模模型训练过程中的资源分配,提高训练效率,缩短研发周期。
- 大型企业:如金融巨头(如JP Morgan、Goldman Sachs)、医疗巨头(如Mayo Clinic、Pfizer)、自动驾驶公司(如Tesla、Waymo)等可以通过该专利技术优化其AI应用的资源分配,提升计算效率,降低运营成本。
总结
该专利通过优化计算节点资源的分配和利用,显著降低了企业在AI训练和推理任务中的成本,适用于金融、医疗、自动驾驶、电商、智能制造等多个行业。虽然专利文件中没有提供具体的实际应用案例,但其技术在云计算服务提供商、AI研究机构和大型企业中具有广泛的应用潜力。
三、专利的布局意义
1. 技术壁垒
该专利通过以下方式构建技术壁垒:
- 核心技术保护:该专利的核心技术包括任务资源预估、动态资源分配、异常任务处理和历史数据反馈机制。这些技术通过专利保护,确保了企业在云计算资源分配领域的独特优势,防止竞争对手直接复制或模仿。
- 专利池与交叉授权:企业可以通过加入专利池或与其他企业进行交叉授权,进一步巩固其技术壁垒。例如,与云计算服务提供商、AI硬件制造商(如英伟达)等合作,形成技术联盟,共同推动行业标准的制定,进一步增强市场竞争力。
- 持续创新与迭代:该专利的历史数据反馈机制使得系统能够不断优化资源分配的准确性,形成持续的技术迭代和创新。这种自我优化的能力使得竞争对手难以在短时间内追赶。
2. 竞争对比
与OpenAI、微软、谷歌、Meta、英伟达等企业的类似专利相比,该专利的差异化优势主要体现在以下几个方面:
- 动态资源分配与再分配:该专利强调动态资源分配和再分配机制,能够根据计算节点的实时状态进行资源调整,避免资源过载或闲置。相比之下,许多企业的专利更侧重于静态资源分配或单一任务的优化,缺乏动态调整的能力。
- 任务资源预估机制:该专利通过历史任务资源分配信息,预估新任务所需的计算资源,确保资源分配的合理性。这种基于历史数据的预估机制在资源分配的准确性和效率上具有显著优势。
- 异常任务处理:该专利能够主动检测和处理异常任务,及时释放资源,避免资源浪费。这种异常处理机制在许多企业的专利中并不常见,进一步提升了系统的稳定性和可靠性。
- 历史数据反馈机制:该专利通过历史数据的反馈和优化,形成闭环优化,不断提升资源分配的准确性。这种自我优化的能力使得该专利在长期应用中具有更强的竞争力。
3. 开源关联
- 与开源协议的兼容性:该专利的技术实现可以与开源协议(如Apache 2.0)兼容。通过将部分技术开源,企业可以吸引更多的开发者参与,降低使用门槛,推动技术的广泛应用和迭代。
- 降低开发者使用门槛:为了降低开发者使用门槛,企业可以采取以下措施:
- 提供开源工具和库:将部分核心算法和工具开源,提供详细的文档和示例代码,帮助开发者快速上手。
- 开发友好的API接口:提供简单易用的API接口,使得开发者能够轻松集成该专利技术到自己的应用中。
- 社区支持与培训:建立开发者社区,提供技术支持和培训,帮助开发者解决使用过程中遇到的问题,促进技术的普及和应用。
总结
该专利通过核心技术保护、专利池与交叉授权、持续创新与迭代等方式构建了强大的技术壁垒。与OpenAI、微软、谷歌、Meta、英伟达等企业的类似专利相比,该专利在动态资源分配、任务资源预估、异常任务处理和历史数据反馈机制等方面具有显著的差异化优势。通过与开源协议兼容并提供开源工具、友好API接口和社区支持,该专利能够降低开发者使用门槛,推动技术的广泛应用和迭代。