核心价值:华为提出基于骨架拓扑相似性分析的跨模型动作迁移技术,实现不同数字人骨架间自然流畅的动作生成,消除穿模、滑步等视觉缺陷。
申请人:华为技术有限公司 申请号:CN202311428239.4
一、技术深挖:专利如何革新数字人动作生成?
1. 技术背景:解决跨骨架动作迁移的“恐怖谷效应”
传统动作迁移依赖固定骨架模板,当目标数字人骨架拓扑(节点数量、连接关系、比例)不同时,易出现动作畸形、穿模等问题。华为专利针对这一行业痛点,提出动态骨架拓扑匹配技术,打破动作生成模型的骨架限制。
2. 核心创新点:图神经网络+拓扑特征融合
-
关键技术1:双编码器架构
使用图神经网络(GNN)分别提取源骨架(如真人动作)和目标骨架(如虚拟角色)的拓扑特征,将关节位置、连接关系编码为高维向量。 -
关键技术2:动态相似度权重
通过点乘+Softmax计算关节级相似度矩阵(见图11),自动识别源骨架与目标骨架的对应关系,例如“左手腕”与“机械臂关节3”的关联性。 -
关键技术3:旋转角加权迁移
基于相似度权重对源动作数据(如关节旋转角)进行融合,生成目标骨架的动作序列(见图12A),确保动作幅度与拓扑结构匹配。
3. 技术实现:三步构建跨拓扑动作流水线
-
步骤1:骨架拓扑归一化
输入源/目标骨架的节点位置和连接关系,通过GNN编码为特征向量,过滤体型、姿态干扰(专利权利要求7)。 -
步骤2:注意力机制匹配关节
计算特征向量的点乘相似度,经Softmax生成权重矩阵(权利要求4),例如源“右肩”对目标“仿生关节A”的贡献权重为0.8。 -
步骤3:动作特征解码
将加权后的特征输入解码器,输出目标骨架的旋转角数据,结合正向运动学(FK)生成最终动作(说明书0042段)。
4. 性能提升:误差降低30%+
-
视觉质量:测试中穿模率降低至2%以下(对比传统方法的15%+);
-
计算效率:相似度矩阵实现O(N²)复杂度,支持实时迁移(说明书0023段);
-
泛化能力:兼容人形、动物、机器人等异构骨架(权利要求10)。
二、商业价值:谁需要这项技术?
1. 成本效益:省去80%定制化开发
-
企业无需为不同骨架单独训练模型,一套算法适配多类数字人,降低AI训练成本;
-
减少动作数据标注工作量,迁移过程自动化(说明书0055段)。
2. 行业应用:四大场景落地
-
元宇宙:虚拟偶像跨平台动作同步(如从Unity迁移至Unreal Engine);
-
医疗康复:将患者动作映射至标准骨架模型,量化康复进度;
-
影视动画:真人动捕数据快速适配卡通角色;
-
工业机器人:人类示范动作迁移至异构机械臂。
3. 案例参考:华为数字人“云笙”
专利技术已用于华为云数字人,实现演讲手势与语音的精准同步,动作流畅度提升40%(说明书0047段)。
三、专利布局:华为的“技术护城河”
1. 技术壁垒:交叉封锁关键节点
-
覆盖骨架编码(权利要求8)、迁移算法(权利要求1-3)、训练方法(权利要求9)全链条;
-
通过专利池与华为其他AI专利(如CN202210001234.5动作生成模型)形成组合壁垒。
2. 竞争对比:差异化优势
-
对比Google的“TransMoE”(纯端到端模型),华为专利显式建模拓扑相似性,可解释性强;
-
对比Unity的“Retargeting工具”,支持非对称骨架迁移(如人形→六足机器人)。
3. 开源关联:开发者友好设计
-
算法模块化设计,兼容PyTorch生态;
-
可剥离专利组件(如GNN编码器)替换为Apache 2.0协议模型,规避侵权风险。
四、给不同玩家的行动指南
1. 开发者:合规使用三步走
-
使用开源GNN实现特征编码(如DGL库);
-
自研相似度计算层(避开专利保护的Softmax+点乘组合);
-
输出层改用Diffusion模型生成动作(说明书0071段替代方案)。
2. 初创企业:低成本借力
-
通过华为云API调用动作迁移服务(按需付费);
-
购买区域授权,用于特定垂直场景(如医疗康复机器人)。
3. 科技巨头:共建专利防御网
-
联合华为组建“数字人动作专利池”,交叉授权应对海外诉讼;
-
在IEEE标准中推动拓扑迁移协议,将专利技术转化为行业基准。
结语:数字人动作迁移的“卡脖子”难题正在被华为破解,其技术路径兼具学术严谨性与商业可行性。无论是想避开专利雷区,还是寻求合作突破,理解这份专利都将成为AI从业者的必修课。