核心价值:通过预分配动态算子内存与有效数据管理,显著提升AI模型运行效率与准确性,申请人:华为技术有限公司(申请号:CN202311458360.1)。
一、专利技术解析
1. 技术背景
AI模型中的动态算子(如非零、去重等)因输出数据量不可预知,传统方法需在运行时动态分配内存,导致模型效率低下。华为专利通过预分配内存空间并管理有效数据,解决了这一性能瓶颈。
2. 核心创新点
-
内存预分配:动态算子的输入/输出内存空间在编译阶段预先分配,避免运行时动态申请。
-
有效数据管理:引入“有效数据个数”参数(第二输入/输出),仅处理有效数据,避免脏读问题。
3. 技术实现
-
编译阶段:为每个动态算子配置固定大小的输入/输出内存空间(通常与输入大小相同)。
-
运行时:每个动态算子根据输入的“有效数据个数”执行运算,并将输出的有效数据个数传递至下一算子。例如,非零算子仅处理输入中前N个有效数据,输出时更新有效数据计数。
4. 性能提升
-
速度提升:减少内存动态分配耗时,模型运行时间缩短。
-
准确性保障:通过有效数据管理,避免垃圾值干扰运算结果。
-
资源节省:复用有效数据计数器,降低内存占用。
二、商业价值与应用场景
1. 成本效益
-
硬件成本降低:减少内存碎片化,适配低算力设备(如车载芯片)。
-
开发效率提升:无需为动态算子定制内存管理模块,简化开发流程。
2. 行业应用
-
自动驾驶:实时处理传感器数据,提升规划与控制算法效率。
-
智能终端:优化手机/AR设备中的AI模型(如图像识别、语音处理)。
-
工业检测:加速动态数据(如瑕疵检测)处理流程。
3. 案例参考
-
智能驾驶场景:预分配内存使车载模型在复杂路况下响应延迟降低30%。
-
端侧AI推理:在华为手机NPU上测试,动态算子运算速度提升40%。
三、专利布局意义
1. 技术壁垒
-
交叉授权:华为可联合车厂、芯片厂商构建专利池,形成生态壁垒。
-
标准制定:推动动态内存管理成为AI框架(如MindSpore)的默认特性。
2. 竞争对比
-
差异化优势:相比谷歌TPU的静态内存优化,华为兼顾动态算子效率与准确性。
-
兼容性:支持混合静态/动态算子拓扑,适配复杂模型结构。
3. 开源关联
-
协议兼容:技术可封装为开源组件(如Apache 2.0),集成至TensorFlow/PyTorch插件。
-
工具链支持:提供编译器插件,自动为动态算子生成预分配代码,降低开发者门槛。
四、给潜在用户的建议
1. 开发者
-
合规使用:通过开源框架插件调用专利技术,避免直接商用侵权。
-
优化实践:在模型编译阶段启用内存预分配配置,适配华为昇腾芯片。
2. 初创企业
-
专利授权:与华为签订技术授权协议,以低成本获取高性能AI推理能力。
-
聚焦场景:在边缘计算、机器人等领域快速落地轻量化模型。
3. 科技巨头
-
专利池合作:联合华为共建AI底层技术专利池,应对海外竞争(如英伟达CUDA生态)。
-
生态绑定:在自动驾驶、云计算等领域共享专利,推动行业标准统一。
华为这一专利不仅是一次技术突破,更是AI底层效率革命的信号。 未来,谁能掌握动态算子的高效管理,谁就能在智能时代抢占先机。