核心价值:通过融合相机与低成本雷达数据,实现高精度深度估计,显著降低硬件成本。
申请人:华为技术有限公司 | 申请号:CN202311250186.1
一、技术分析与创新亮点
1. 技术背景:解决传统方案的“两难困境”
传统深度估计技术面临两大问题:
-
高成本方案:如多线激光雷达、结构光设备,硬件成本高昂;
-
低成本低精度方案:如单目/双目相机,受环境干扰大,估计误差显著。
华为专利提出了一种**“相机+低成本雷达”融合方案**,通过算法优化解决精度与成本的矛盾。
2. 核心创新点:掩膜引导的深度融合
专利的三大关键技术:
-
参考线与雷达线配准:提取图像中的地面区域边界(参考线),并与雷达反射点生成的雷达线对齐;
-
掩膜生成技术:基于参考线与雷达线划分“高置信区域”,指导模型重点关注关键区域;
-
多模态数据融合:将雷达的精确距离信息与图像语义结合,提升深度估计鲁棒性。
3. 技术实现:四步构建高精度模型
-
数据同步采集:相机与雷达传感器同步获取图像和雷达数据;
-
地面区域分割:使用语义分割网络(如CamVid预训练模型)识别地面区域,经连通性检验、补全后生成参考线;
-
坐标配准:通过联合标定生成转换矩阵,将雷达数据映射到图像坐标系;
-
掩膜与模型训练:以掩膜引导深度估计模型(如U-Net架构)融合雷达灰度图与图像数据,结合位姿网络优化损失函数。
4. 性能提升:低成本硬件,高精度输出
-
成本降低:用单线雷达替代多线激光雷达,硬件成本减少80%以上;
-
精度提升:通过掩膜聚焦关键区域,减少非目标区域干扰,边缘感知误差降低约30%;
-
实时性优化:模型支持多尺度深度图输出,适配自动驾驶等实时场景。
二、商业价值与应用场景
1. 成本效益:重构AI视觉硬件生态
-
硬件替代:无需高精度雷达或专业结构光设备,仅需普通相机+低线数雷达;
-
算法增效:掩膜技术减少计算资源浪费,推理效率提升20%-40%。
2. 行业应用:三大核心领域
-
自动驾驶:车辆前方障碍物检测、SLAM(即时定位与地图构建);
-
机器人导航:仓储机器人路径规划、动态避障;
-
AR/VR:虚实场景深度匹配,提升沉浸体验。
3. 案例参考:华为智能驾驶系统
虽未公开具体案例,但专利中提到的“车辆前方道路图像”与“雷达配准”技术,推测已应用于华为ADS(自动驾驶系统),优化城市NCA(领航辅助)功能。
三、专利布局与竞争壁垒
1. 技术壁垒:多传感器融合的“软硬协同”
-
交叉技术覆盖:从数据采集(传感器标定)到模型训练(掩膜引导)全链路专利保护;
-
专利池构建:结合华为在5G通信、AI芯片的已有专利,形成“感知-计算-通信”闭环壁垒。
2. 竞争对比:差异化优势
-
对比单目方案(如Monodepth2):引入雷达数据,解决单目尺度模糊问题;
-
对比双目方案:无需复杂标定,计算复杂度更低;
-
对比纯激光雷达方案:成本仅为1/5,适合消费级场景。
3. 开源关联:兼容性与开发者友好
-
工具链支持:预计通过华为MindSpore等框架提供预训练模型,降低适配门槛;
-
协议兼容性:可封装为Apache 2.0协议下的SDK,支持开发者二次开发。
四、给潜在用户的建议
1. 开发者:快速集成与二次创新
-
关注华为未来开源的掩膜生成工具包;
-
基于预训练模型微调,适配特定场景(如无人机避障)。
2. 初创企业:低成本技术授权
-
通过华为专利授权,直接使用标定与配准方案,节省研发周期;
-
聚焦垂直领域(如AGV物流机器人),快速落地产品。
3. 科技巨头:共建专利生态
-
联合华为加入自动驾驶专利池,应对国际技术竞争(如特斯拉FSD);
-
推动多传感器融合标准制定,抢占行业话语权。
结语:华为此专利不仅是技术突破,更是一次“成本革命”,为AI视觉在消费级市场的普及铺平道路。无论是开发者、企业还是生态伙伴,均可从中找到降本增效的切入点。