痛点:推荐系统中的负样本困境
在推荐系统领域,负采样技术一直是影响模型性能的关键因素。当前主流方法面临着两难困境:一方面,简单的负样本(如随机采样)与正样本距离过远,导致模型区分过于容易,无法学习到有效的特征表示;另一方面,过于"困难"的负样本往往可能是潜在的伪负样本(用户可能喜欢但尚未交互的项),这类样本会严重损害模型性能。
传统解决方案如静态采样器(均匀分布或流行度分布)、硬负采样技术或基于GAN的方法,都无法从根本上解决这一矛盾。特别是在学术论文推荐、电商推荐等对推荐精度要求极高的场景,这一问题尤为突出。当负样本区分度过低时,模型无法充分学习用户真实偏好;而伪负样本比例过高时,则会导致推荐结果出现严重偏差。
技术实现框架
本专利提出了一种创新的难负样本混合生成方法,通过维度最大混合策略自动合成高质量的难负样本。技术实现分为三个关键阶段:
-
图神经网络编码阶段:构建用户-物品二部图,通过多层图卷积网络(GCN)聚合邻居信息,生成用户和物品的层级化表示向量。每一层的聚合过程可表示为:
用户表示:e_u^(k+1) = AGG({e_i^(k) | i∈N(u)}) 物品表示:e_i^(k+1) = AGG({e_u^(k) | u∈N(i)})
其中AGG为轻量化的聚合函数,去除了传统GCN中的特征变换和非线性激活,保留了纯粹的图结构信息。
-
维度混合负采样阶段(核心创新):
- 为每个用户随机采样M个未交互物品作为候选负样本集
- 对每一图卷积层产生的表示进行维度级混合:
对于第l层第d维: x_d = argmax_x(e_u[l][d] * e_i_x[l][d]), x∈1...M
- 组合所有层的混合结果形成最终难负样本表示
-
动态掺杂训练阶段:
将生成的难负样本与正样本按自适应比例混合:e_mix = α*e_+ + (1-α)*e_* α = σ(β*(sim(e_u,e_+)-sim(e_u,e_*)))
其中β为控制掺杂强度的超参数,σ为sigmoid函数
算法性能对比
在公开推荐数据集上的测试表明,该技术在关键指标上显著优于主流方案:
指标 | 传统随机采样 | 硬负采样 | 本专利方法 |
---|---|---|---|
Recall@10 | 0.328 | 0.351 | 0.392 |
NDCG@10 | 0.281 | 0.302 | 0.337 |
训练收敛速度(epoch) | 45 | 52 | 38 |
伪负样本比例 | 12% | 28% | <5% |
特别是在学术论文推荐场景下,该方法将冷启动用户的推荐准确率提升了41%,显著优于对比方案。
技术优势解析
-
维度级混合的创新性:不同于传统样本级混合,本方法在表示向量的每个维度上独立选择最优元素,实现了细粒度的负样本合成
-
层级化处理:对图神经网络每层产生的表示分别进行混合,保留了图结构的多跳语义信息
-
动态掺杂机制:通过正负样本相似度自适应调整混合比例,避免了人工调参的繁琐
-
理论保证:专利中证明了该方法生成的负样本与用户向量的内积期望上界,确保了样本难度
开发者实施指南
基于PyTorch的实现核心代码框架:
class MixNegativeSampler:
def __init__(self, num_negatives=64, beta=1.0):
self.M = num_negatives
self.beta = beta
def generate(self, user_emb, pos_emb, neg_embs):
# neg_embs: [M x layers x dim]
mixed_neg = []
for l in range(neg_embs.size(1)): # 逐层处理
layer_neg = []
for d in range(neg_embs.size(2)): # 逐维处理
scores = user_emb[l][d] * neg_embs[:,l,d]
selected = torch.argmax(scores)
layer_neg.append(neg_embs[selected,l,d])
mixed_neg.append(torch.stack(layer_neg))
return torch.stack(mixed_neg) # [layers x dim]
def mix_pos_neg(self, user_emb, pos_emb, neg_emb):
pos_sim = (user_emb * pos_emb).sum()
neg_sim = (user_emb * neg_emb).sum()
alpha = torch.sigmoid(self.beta * (pos_sim - neg_sim))
return alpha * pos_emb + (1-alpha) * neg_emb
典型使用场景示例:
# 初始化
sampler = MixNegativeSampler(num_negatives=64, beta=1.2)
# 训练循环中
for user, pos_item, neg_items in dataloader:
user_emb = gnn(user) # [layers x dim]
pos_emb = gnn(pos_item)
neg_embs = gnn(neg_items) # [M x layers x dim]
hard_neg = sampler.generate(user_emb, pos_emb, neg_embs)
mixed_neg = sampler.mix_pos_neg(user_emb, pos_emb, hard_neg)
loss = bpr_loss(user_emb, pos_emb, mixed_neg)
技术生态与专利保护
该技术已构建完整的专利保护体系,权利要求覆盖:
- 维度最大混合的核心算法
- 图神经网络与负采样的协同训练框架
- 动态掺杂比例的计算方法
- 推荐系统的具体应用场景
与主流方案相比,本技术避免了NVIDIA Merlin等框架中负采样与模型耦合度过高的问题,同时相比华为MindSpore的静态负采样策略,在动态适应性上有显著提升。
开源策略上,基础采样算法已公开研究实现,而高性能分布式训练版本和动态调参算法保留在商业SDK中,为用户提供了灵活的采用路径。
典型错误规避
- 候选负样本数量不足:建议M≥64,过少会导致混合效果不佳
- β参数设置不当:推荐初始值1.0-1.5,过大易导致训练不稳定
- 忽略层级信息:必须对每层GNN表示单独处理,直接使用最终表示会损失信息
- 掺杂比例固定:必须采用动态计算,静态混合会引入偏差
应用前景
该技术特别适合以下场景:
- 学术推荐:解决论文数据稀疏、冷启动问题
- 电商长尾推荐:提升低频商品的曝光质量
- 视频推荐:改善用户兴趣探索能力
- 金融产品推荐:精准匹配高风险偏好用户
随着推荐系统对样本质量要求的不断提高,这种基于维度混合的负采样技术有望成为新一代推荐架构的标准组件。
【标注信息】申请人:北京智谱华章科技有限公司 | 申请号:CN202410518786.X | 申请日:2024.04.28 | 公开日:2024.07.02 | 发明创造名称:难负样本的混合生成方法及推荐方法、装置、设备及介质