端到端的票据类版面分析算法(二)

端到端的票据类版面分析算法(二)


前言

前段时间分享的票据类版面分析解决方案,得到不少小伙伴的认可,在此非常感谢~。大家在使用过程中也遇到不少问题,其中最集中的就是:适用场景、句向量。因此引出本篇内容,顺便对算法做个小小的升级。github


一、算法适用场景

1.适用场景

当时设计算法的初衷是解决OCR之后,版面不容易解析的问题,如果版面规规矩矩,根据坐标和正则进行解析即可,不用这么麻烦。

规规矩矩的发票

不好解析的版面包括:

  • 关键信息漂移的增值税发票、出租车发票
  • 位置不固定、倾斜的扫描件
  • 版面有干扰,关键锚点被遮挡
  • 版面复杂,提取信息较多
    此类场景下,不能很好的利用位置、正则等有效信息,此时版面分析算法才比较适用。复杂版面

2.关于表格

先说结论,目前的版面分析算法只限票据类的数据,表格不适用。表格的信息提取是一个key-value的数据结构,不仅要提取对应的key-value,而且很可能是一个key对应多个value,比如财务报表,里边还涉及到表格的重构,以后会做专门的分享。

二、句向量升级

1.无监督句向量的问题

句向量虽好,但是在票据类场景确实不太好训练,因为版式里的文本来来回回也就那么几条,大部分训练出来的句向量很可能就没有起到句向量应有的作用,而且有的小伙伴反应,训练出的句向量都是10的负三次方级别的,和位置信息的10的负一次方级别差距还是非常大的,上一版效果不错,完全就是seq2seq和坐标信息在力挽狂澜。

2.有监督的句向量训练方法

既然已经对每个文本框的groupid打标签了,那就把信息利用起来吧,直接训练一个基于lstm的文本分类模型,目的不是为了文本分类,因为本身信息就不足,目的只是为了获取分类模型的隐层向量。

模型也非常简单,基于单层单向的lstm即可,模型大小也就700K,在不提供位置信息的条件下准确率也能达到90%多了,稍后会在项目中提供一个rnn的工具包(有需要私聊我),欢迎大家star交流~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值