基于Nerf的三维重建算法Neus初探

文章介绍了NeuS,一种用于从2D图像重建高保真对象和场景的神经网络方法。通过训练神经SDF表示和改进的体绘制技术,NeuS能实现更精确的表面重建。文章提供了代码链接、安装教程,以及训练开源数据和自定义数据的步骤,包括使用Colmap进行相机位姿估计和mask生成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

介绍

安装

训练开源数据

训练自己的数据


介绍

作者提出了一种新的神经表面重建方法,称为NeuS,用于从2D图像输入中以高保真度重建对象和场景。在NeuS中,我们建议将曲面表示为有符号距离函数(SDF)的零级集,并开发一种新的体绘制方法来训练神经SDF表示。我们观察到,传统的体绘制方法会导致表面重建的固有几何误差(即偏差),因此提出了一种在一阶近似中没有偏差的新公式,从而即使在没有掩模监督的情况下也能实现更准确的表面重建。在DTU数据集和BlendedMVS数据集上的实验表明,NeuS在高质量表面重建方面优于现有技术,尤其是对于具有复杂结构和自遮挡的对象和场景。

算法已开源,先把代码扔这了。

github:GitHub - Totoro97/NeuS: Code release for NeuS

安装

git clone https://github.com/Totoro97/NeuS.git
cd NeuS
pip install -r requirements.txt

这是readme中给出的,如果顺利的话说明你安装的很顺利,如果不顺利的话,可以参考我的方法。(顺利的安装千篇一律,不顺的安装各有各的不顺,我的不顺是cuda和pytorch的版本不匹配)

首先还是推荐用conda搭建虚拟环境。

conda create 
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值