前言
今天给大家介绍的是Python爬取新冠疫情数据并实现数据可视化,在这里给需要的小伙伴们代码,并且给出一点小心得。
首先是爬取之前应该尽可能伪装成浏览器而不被识别出来是爬虫,基本的是加请求头,但是这样的纯文本数据爬取的人会很多,所以我们需要考虑更换代理IP和随机更换请求头的方式来对招聘网站数据进行爬取。
在每次进行爬虫代码的编写之前,我们的第一步也是最重要的一步就是分析我们的网页。
通过分析我们发现在爬取过程中速度比较慢,所以我们还可以通过禁用谷歌浏览器图片、JavaScript等方式提升爬虫爬取速度。
开发工具
Python版本: 3.8
相关模块:
requests模块
lxml模块
openpyxl模块
pandas模块
pyecharts模块
环境搭建
安装Python并添加到环境变量,pip安装需要的相关模块即可。
思路分析
浏览器中打开我们要爬取的页面
按F12进入开发者工具,查看我们想要的疫情数据在哪里
这里我们需要页面数据就可以了
代码实现
Epidemic crawler.py
import requests
from lxml import etree
import json
import openpyxl
#通用爬虫
url = 'https://voice.baidu.com/act/newpneumonia/newpneumonia'
headers = {
"User-Agent": "换成自己浏览器的"
}
response = requests.get(url=url,headers=headers).text
#在使用xpath的时候要用树形态
html = etree.HTML(response)
#用xpath来获取我们之前找到的页面json数据 并打印看看
json_text = html.xpath('//script[@type="application/json"]/text()')
json_text = json_text[0]
print(json_text)
#用python本地自带的库转换一下json数据
result = json.loads(json_text)
print(result)
#通过打印出转换的对象我们可以看到我们要的数据都要key为component对应的值之下,所以现在我们将值拿出来
result = result["component"]
#再次打印看看结果
print(result