问题描述
有一棵 n 个节点的树,树上每个节点都有一个正整数权值。如果一个点被选择了,那么在树上和它相邻的点都不能被选择。求选出的点的权值和最大是多少?
输入格式
第一行包含一个整数 n 。
接下来的一行包含 n 个正整数,第 i 个正整数代表点 i 的权值。
接下来一共 n-1 行,每行描述树上的一条边。
输出格式
输出一个整数,代表选出的点的权值和的最大值。
样例输入
5
1 2 3 4 5
1 2
1 3
2 4
2 5
1 2 3 4 5
1 2
1 3
2 4
2 5
样例输出
12
样例说明
选择3、4、5号点,权值和为 3+4+5 = 12 。
数据规模与约定
对于20%的数据, n <= 20。
对于50%的数据, n <= 1000。
对于100%的数据, n <= 100000。
权值均为不超过1000的正整数。
题解:这个需要用树状什么dp。好麻烦,感觉就是倒过来dp。还好是树状结构。用ans数组存储当前最大值,然后倒退dp。具体参考网上大神代码,神dp.简直dp小王子,许多饶不清的一目了然...
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <queue>
#include <map>
#include <stack>
#include <list>
#include <vector>
using namespace std;
//#define DEBUG
vector <int>vc[100010];
int ans[100010][5];
void dp(int u,int v)
{
int k,i;
for (i=0;i<vc[u].size();i++)
{
k=vc[u][i];
if (k!=v)
{
dp(k,u);
ans[u][1]+=ans[k][0];
ans[u][0]+=(ans[k][0]>ans[k][1]?ans[k][0]:ans[k][1]);
}
}
}
int main()
{
#ifdef DEBUG
freopen("cin.txt", "r", stdin);
freopen("cout.txt", "w", stdout);
#endif
int n,i;
while(~scanf("%d",&n))
{
for (i=1;i<=n;i++)
vc[i].clear();
memset(ans,0,sizeof(ans[0]));
for(i=1;i<=n;i++)
scanf("%d",&ans[i][1]);
for (i=1;i<n;i++)
{
int u,v;
scanf("%d%d",&u,&v);
vc[u].push_back(v);
vc[v].push_back(u);
}
for (i=1;i<=n;i++)
{
if(vc[i].size()==1)
{
dp(i,-1);
int max=ans[i][0]>ans[i][1]?ans[i][0]:ans[i][1];
printf("%d\n",max);
break;
}
}
}
return 0;
}