算法训练 结点选择

问题描述

有一棵 n 个节点的树,树上每个节点都有一个正整数权值。如果一个点被选择了,那么在树上和它相邻的点都不能被选择。求选出的点的权值和最大是多少?

输入格式

第一行包含一个整数 n 。

接下来的一行包含 n 个正整数,第 i 个正整数代表点 i 的权值。

接下来一共 n-1 行,每行描述树上的一条边。

输出格式
输出一个整数,代表选出的点的权值和的最大值。
样例输入
5
1 2 3 4 5
1 2
1 3
2 4
2 5
样例输出
12
样例说明
选择3、4、5号点,权值和为 3+4+5 = 12 。
数据规模与约定

对于20%的数据, n <= 20。

对于50%的数据, n <= 1000。

对于100%的数据, n <= 100000。

权值均为不超过1000的正整数。



题解:这个需要用树状什么dp。好麻烦,感觉就是倒过来dp。还好是树状结构。用ans数组存储当前最大值,然后倒退dp。具体参考网上大神代码,神dp.简直dp小王子,许多饶不清的一目了然...

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <queue>
#include <map>
#include <stack>
#include <list>
#include <vector>
using namespace std;
//#define DEBUG
vector <int>vc[100010];
int ans[100010][5];
void dp(int u,int v)
{
	int k,i;
	for (i=0;i<vc[u].size();i++)
	{
		k=vc[u][i];
		if (k!=v)
		{
			dp(k,u);
			ans[u][1]+=ans[k][0];
			ans[u][0]+=(ans[k][0]>ans[k][1]?ans[k][0]:ans[k][1]);
		}
	}
}
int main()
{
#ifdef DEBUG
	freopen("cin.txt", "r", stdin);
	freopen("cout.txt", "w", stdout);
#endif
	int n,i;
	while(~scanf("%d",&n))
	{
		for (i=1;i<=n;i++)
			vc[i].clear();
		memset(ans,0,sizeof(ans[0]));
		for(i=1;i<=n;i++)
			scanf("%d",&ans[i][1]);
		for (i=1;i<n;i++)
		{
			int u,v;
			scanf("%d%d",&u,&v);
			vc[u].push_back(v);
			vc[v].push_back(u);
		}
		for (i=1;i<=n;i++)
		{
			if(vc[i].size()==1)
			{
				dp(i,-1);
				int max=ans[i][0]>ans[i][1]?ans[i][0]:ans[i][1];
				printf("%d\n",max);
				break;
			}
		}
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值