一、多租户架构概述
多租户架构是指在一个应用中支持多个租户(Tenant)同时访问,每个租户拥有独立的资源
和数据
,并且彼此之间完全隔离。
二、多租户架构重难点概述
设计和实现一个多租户架构需要考虑许多关键因素。以下是一些重要的注意点:
1. 数据隔离
数据隔离是多租户架构的核心要求之一。租户之间的数据不能互相访问或泄露。常见的数据隔离方法有:
- 单一数据库模型:所有租户的数据存储在一个数据库中,通常通过在数据库表中添加“租户ID”字段来区分不同租户的数据。适合租户数目较少或数据访问量不高的场景。
- 共享架构模型:共享同一个数据库连接,每个租户有自己的独立的schema,实现数据的逻辑隔离。
- 独立数据库模型:每个租户拥有独立的数据库,这样可以完全隔离租户的数据,确保最高级别的安全性,但管理多个数据库的复杂度较高,成本也较大。
2.资源隔离
资源隔离是确保每个租户的数据和计算资源在同一系统环境下不被其他租户干扰的一项重要任务。资源隔离可以从多个维度进行划分,包括数据隔离、计算隔离、存储隔离和网络隔离。
在多租户架构中,资源隔离是确保每个租户的数据和计算资源在同一系统环境下不被其他租户干扰的一项重要任务。资源隔离可以从多个维度进行划分,包括数据隔离、计算隔离、存储隔离和网络隔离。
每个租户的资源隔离策略会影响到架构设计的复杂性、性能和可扩展性。
1. 数据隔离
数据隔离是多租户架构中最重要的资源隔离方式之一。确保每个租户的数据在物理或逻辑上互相隔离,可以防止数据泄漏和不必要的访问。
1.1 隔离方式
-
独立数据库模型(Database-per-Tenant):每个租户使用独立的数据库。每个数据库完全隔离,保证了数据的安全性和独立性。
- 优点:
- 完全隔离,不同租户的数据完全分开,互不影响。
- 安全性高,数据库层级的隔离减少了数据泄露的风险。
- 可以根据租户的需求定制数据库配置(如索引、表结构等)。
- 缺点:
- 高资源消耗,管理多个数据库实例可能增加运维复杂性。
- 随着租户增多,系统的资源(如数据库连接池、内存、存储等)可能成为瓶颈。
- 迁移和备份较为复杂。
- 优点:
-
共享数据库模型(Single Database-per-Tenant):所有租户共享一个数据库实例,每个租户的数据通过
tenant_id
(租户标识符)字段来隔离。- 优点:
- 更低的资源消耗,管理和运维更简单。
- 能够更容易地进行数据库的优化和扩展。
- 缺点:
- 在数据库查询时需要加
tenant_id
来做隔离,可能导致查询效率降低。 - 随着租户数量增加,可能会遇到性能瓶颈(特别是在数据量大的时候)。
- 隔离性较差,如果查询条件不当,可能会导致数据泄漏。
- 在数据库查询时需要加
- 优点:
-
共享架构模型(Schema-per-Tenant):每个租户的数据存储在同一个数据库实例中的独立 schema 中。
- 优点:
- 数据库资源共享,避免了多个数据库实例的资源消耗。
- 每个租户的 schema 可以独立管理,隔离性较好。
- 缺点:
- 性能可能受到同一实例中多个 schema 的影响,随着租户数量增加,管理变得复杂。
- 对于高并发场景,可能存在数据库实例层级的性能瓶颈。
- 优点:
1.2 数据库权限管理
- 无论采用哪种数据隔离策略,都应使用严格的 数据库权限控制。即使是共享数据库或共享 schema,确保每个租户的数据库用户仅能访问自己租户的数据。
- 可以通过数据库的 角色和权限管理 来确保数据隔离。例如,使用 SQL Server 或 PostgreSQL 的行级安全性(RLS)功能来控制不同租户的访问权限。
2. 计算隔离
计算资源隔离主要是指不同租户的计算任务在执行时不会互相干扰。对于一个云平台或者大规模多租户系统,计算资源的隔离通常是通过 容器化 技术来实现的。
2.1 容器化(Containerization)
通过容器(如 Docker)将每个租户的应用部署在独立的容器中,虽然多个容器可能运行在同一主机上,但每个容器相互隔离,确保资源隔离。
- 优点:
- 资源消耗较小,相比虚拟机,容器的启动和运行开销较低。
- 更高的密度,能够在同一台物理机上部署更多的租户应用。
- 容器可以通过 资源配额(Resource Quotas) 和 限制(Limit) 来控制 CPU、内存和存储等资源的使用。
- 缺点:
- 需要精细化管理容器的资源调度,防止资源争抢。
- 如果容器化平台(如 Kubernetes)管理不当,可能导致资源的共享问题。
- 注意:
- k8s做资源隔离,一个应用只能绑定某一个特定的租户,无法实现动态数据源。
2.2 具体实现方式
2.2.1 命名空间隔离
Kubernetes 中的命名空间(Namespace)是逻辑隔离租户资源的基本单元。每个租户可以有自己的命名空间,所有运行的应用容器实例都归属于特定的命名空间。
-
优点:
- 易于管理租户资源。
- 能够结合 ResourceQuota 和 LimitRange 限制租户的资源使用。
- 通过网络策略实现租户间的网络隔离。
-
示例:
apiVersion: v1 kind: Namespace metadata: name: tenant-a --- apiVersion: v1 kind: Namespace metadata: name: tenant-b
不同租户的应用部署到对应的命名空间内:
apiVersion: apps/v1 kind: Deployment metadata: name: tenant-a-app namespace: tenant-a spec: replicas: 3 template: metadata: labels: app: tenant-a-app spec: containers: - name: app-container image: tenant-a-app-image
2.2.2 应用实例的租户绑定
每个容器化应用实例绑定到特定的租户,通过以下方式实现:
-
环境变量注入租户标识:
在容器启动时注入租户标识(如TENANT_ID
或TENANT_NAME
),让应用实例在运行时固定绑定某个租户。apiVersion: apps/v1 kind: Deployment metadata: name: tenant-app namespace: tenant-a spec: template: spec: containers: - name: tenant-app-container image: tenant-app-image env: - name: TENANT_ID value: "tenant-a" - name: DB_URL value: "jdbc:mysql://tenant-a-db:3306/tenant_db"
应用代码可以根据注入的租户标识加载对应的配置(如数据库、缓存等)。
-
租户独立的资源:
- 每个租户可以有自己的数据库实例、缓存服务、存储卷等,容器实例根据租户标识访问这些独立资源。
- 通过 Kubernetes 的 ServiceAccount 或 Secrets 提供租户专属的认证信息和配置。
2.2.3 资源隔离的细粒度控制
-
资源配额(ResourceQuota):
为每个租户的命名空间分配资源配额,限制 CPU、内存、存储等使用量。apiVersion: v1 kind: ResourceQuota metadata: name: tenant-a-quota namespace: tenant-a spec: hard: requests.cpu: "4" requests.memory: "8Gi" limits.cpu: "8" limits.memory: "16Gi"
-
网络隔离(NetworkPolicy):
定义网络策略,限制租户的容器只能与特定的服务通信。apiVersion: networking.k8s.io/v1 kind: NetworkPolicy metadata: name: deny-tenant-interaction namespace: tenant-a spec: podSelector: {} ingress: - from: - namespaceSelector: matchLabels: name: tenant-a
-
RBAC(基于角色的访问控制):
控制用户只能操作特定租户命名空间内的资源。apiVersion: rbac.authorization.k8s.io/v1 kind: RoleBinding metadata: name: tenant-a-admin namespace: tenant-a subjects: - kind: User name: admin-tenant-a roleRef: kind: Role name: admin apiGroup: rbac.authorization.k8s.io
在要求资源隔离的场景下,Kubernetes 上运行的容器化应用通常应在运行时绑定到某个具体租户。这种方式能够通过 Kubernetes 提供的命名空间隔离、资源配额、网络策略和 RBAC 等机制,实现不同租户间的计算、存储、网络和权限隔离。同时,应用可以通过环境变量或动态配置加载租户特定的数据源,进一步增强隔离性和灵活性。
3. 存储隔离
存储隔离是确保每个租户的数据在物理存储上互不干扰,防止数据泄漏和不必要的资源竞争。
3.1 独立存储(Storage-per-Tenant)
每个租户的数据存储在独立的物理存储上,保证完全的存储资源隔离。
- 优点:
- 完全的隔离,确保不同租户的数据物理上完全分开。
- 缺点:
- 存储资源管理复杂,尤其是在租户数目和数据量大时。
3.1.1 独立的对象存储桶
独立存储的实现方式通常涉及到为每个租户提供独立的存储实例、目录、数据库、对象存储桶等。
实现方式:
- 为每个租户分配一个独立的存储桶:
- 通过将每个租户的数据存储在不同的存储桶中,确保数据完全隔离,避免跨租户数据访问
- 优点:
- 强隔离性:每个租户的数据完全独立,不会与其他租户的数据混淆。
- 易于管理:每个租户的数据和权限独立,易于控制访问和存储策略。
- 可以使用存储桶的访问控制策略来管理租户的权限。
- 缺点:
- 存储管理复杂:需要为每个租户创建和管理独立的存储桶,尤其是当租户数量较多时,管理成本可能较高。
- 可能需要更多的存储费用,因为每个存储桶可能有独立的管理和优化成本。
- 存储桶内按租户目录划分数据:
- 可以在一个存储桶内,为每个租户创建独立的目录,每个租户的数据存储在自己专属的目录下。尽管这些数据存储在同一个存储桶内,但通过目录结构来实现数据隔离。
- 优点:
- 节省存储费用:共享同一个存储桶,可以提高资源利用率,减少存储管理的复杂度。
- 易于扩展:随着租户的增加,目录结构可以灵活地支持更多租户的存储需求。
- 缺点:
- 隔离性较差:虽然使用目录来隔离数据,但仍然是物理共享同一个存储桶,可能存在安全风险。
- 权限控制更加复杂:需要精细化地控制目录的访问权限,以避免租户间的交叉访问。
1. 独立对象存储桶
在对象存储系统中,为每个租户创建独立的存储桶(Bucket)或容器,确保每个租户的数据存储在不同的存储区域。
3.2 共享存储(Shared Storage)
多个租户的数据存储在同一存储系统上,但通过租户标识符(如 tenant_id
)来区分不同租户的数据。
- 优点:
- 存储资源共享,节省成本。
- 容易扩展,能够动态增加租户的存储空间。
- 缺点:
- 需要确保数据隔离,防止数据泄漏。通常需要通过加密或访问控制来增强安全性。
- 在高并发场景下,可能会出现存储资源争用的问题。
- 实现方式:
- 多个租户通过不同的
目录
或文件夹
或容器
或命名空间
访问同一个存储系统,确保不同租户的逻辑隔离。为了确保每个租户的数据隔离,通常通过目录结构、访问控制列表(ACL)、文件权限等来进行隔离。
- 多个租户通过不同的
4. 网络隔离
在多租户架构中,不同租户之间的网络隔离可以通过以下方式实现:
4.1 虚拟私有网络(VPC)
每个租户可以在云平台上分配独立的虚拟私有网络(VPC),确保不同租户的网络流量不会相互干扰。
- 优点:
- 完全的网络隔离,防止跨租户的流量泄漏或攻击。
- 缺点:
- 需要复杂的网络管理和路由策略。
4.2 容器网络隔离
在容器化环境中,尤其是使用 Kubernetes 等容器编排平台时,可以通过容器网络插件(CNI)来实现租户的网络隔离。Kubernetes 提供了多种网络策略,可以实现租户之间的网络隔离和流量控制。
实现方式:
- Pod 网络隔离:每个租户可以在 Kubernetes 中运行自己的 pod,并为每个租户创建独立的网络命名空间。在 Kubernetes 中,可以使用 Network Policies 来控制 pod 之间的通信。
-
虚拟网络命名空间:为每个租户创建独立的网络命名空间,保证不同租户的网络流量互不干扰。
-
网络策略:使用 Kubernetes 的网络策略控制哪些 Pod 可以和其他 Pod 通信,通过制定规则来限制租户之间的网络访问。
-
优点:
- 高效的资源利用:容器技术轻量级,能够有效利用硬件资源。
- 动态性:容器可以根据需求随时启动、停止或扩展,网络配置可以自动适应。
- 强大的网络策略:Kubernetes 提供的网络策略非常灵活,可以根据租户需求进行精确的控制。
-
缺点:
- 初期配置较为复杂,需要掌握 Kubernetes 网络插件和网络策略。
- 网络隔离的管理较为复杂,尤其是在租户数目多时。
-
5. 总结
实现多租户架构中的资源隔离需要综合考虑以下几个方面:
- 数据隔离:根据业务需求选择合适的隔离模型(如独立数据库、独立 schema、共享数据库等)。
- 计算隔离:使用虚拟化、容器化或无服务器架构来确保租户之间计算资源不互相干扰。
- 存储隔离:确保租户数据存储独立,或者通过访问控制和加密来保护数据。
- 网络隔离:通过虚拟私有网络、VLAN、子网等方式实现租户间的网络隔离。
不同的隔离方式具有不同的优缺点,选择适合自己应用场景的资源隔离方式至关重要。对于大规模、多租户的 SaaS 系统,常常需要综合考虑性能、成本、扩展性、安全性等因素来设计最合适的资源隔离方案。
三、难点剖析
1.数据隔离
1.1 独立数据库模型
如何管理不同租户的数据库连接?
需要考虑几个关键方面:数据库连接池管理、动态数据源切换、配置管理、性能优化等。
1.1.1. 数据库连接池管理
在多租户架构中,使用数据库连接池来高效地管理数据库连接非常重要。对于每个租户,都需要为其提供独立的数据库连接池。可以通过以下几种方式来管理不同租户的连接池:
1.1.1.1. 动态数据源的设计
为了在运行时根据当前租户切换数据库连接,可以设计一个动态数据源。动态数据源可以根据不同租户的需求,动态切换到对应的数据库实例或架构。
-
Spring框架:Spring框架提供了强大的数据源管理功能,可以结合
AbstractRoutingDataSource
类来实现动态数据源切换。实现步骤:
- 创建一个路由数据源:继承
AbstractRoutingDataSource
,重写determineCurrentLookupKey()
方法,根据当前请求的租户ID返回对应的数据库标识符。 - 创建数据源配置类:定义租户数据库连接池的配置,可以使用
HikariCP
、Druid
等连接池库来管理每个租户的数据库连接。
- 创建一个路由数据源:继承
import org.springframework.jdbc.datasource.lookup.AbstractRoutingDataSource;
public class TenantRoutingDataSource extends AbstractRoutingDataSource {
@Override
protected Object determineCurrentLookupKey() {
return TenantContext.getTenantId(); // 获取当前租户ID
}
}
- 数据源配置:你可以为每个租户的数据库配置一个对应的
DataSource
。
@Configuration
public class DataSourceConfig {
@Bean
public DataSource dataSource() {
TenantRoutingDataSource routingDataSource = new TenantRoutingDataSource();
Map<Object, Object> targetDataSources = new HashMap<>();
// 对每个租户配置一个对应的数据库连接
targetDataSources.put("tenant1", tenant1DataSource());
targetDataSources.put("tenant2", tenant2DataSource());
routingDataSource.setTargetDataSources(targetDataSources);
routingDataSource.setDefaultTargetDataSource(defaultDataSource());
return routingDataSource;
}
@Bean
public DataSource tenant1DataSource() {
// 配置tenant1的DataSource
return DataSourceBuilder.create()
.url("jdbc:mysql://localhost:3306/tenant1_db")
.username("user")
.password("password")
.build();
}
@Bean
public DataSource tenant2DataSource() {
// 配置tenant2的DataSource
return DataSourceBuilder.create()
.url("jdbc:mysql://localhost:3306/tenant2_db")
.username("user")
.password("password")
.build();
}
@Bean
public DataSource defaultDataSource() {
// 配置默认数据源(如果有)
return DataSourceBuilder.create()
.url("jdbc:mysql://localhost:3306/default_db")
.username("default")
.password("default")
.build();
}
}
1.1.1.2. 数据库连接池
常用的数据库连接池(如HikariCP、Druid、C3P0等)可以与动态数据源结合使用,保证每个租户有独立的数据库连接池。比如:
- HikariCP:高性能的数据库连接池,适用于高并发场景。
- Druid:功能丰富,支持连接池监控、SQL执行分析等,适合对数据库操作要求较高的项目。
在动态数据源的实现中,可以为每个租户设置独立的连接池实例。你可以通过配置文件来读取每个租户的数据库连接信息。
1.1.2. 获取租户信息
在多租户系统中,首先要根据每个请求的上下文获取当前租户的信息(通常是租户ID)。这个信息可以通过以下几种方式获取:
-
通过请求头、参数或会话传递:每个请求可以带上租户标识(如租户ID、子域名、API Token等),并在请求进入时获取租户信息。
示例:通过过滤器或拦截器在每次请求中获取租户ID。
@Component
public class TenantFilter implements Filter {
@Override
public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain) throws IOException, ServletException {
String tenantId = request.getParameter("tenantId");
if (tenantId != null) {
TenantContext.setTenantId(tenantId); // 设置当前线程的租户ID
}
chain.doFilter(request, response);
}
}
通过上面的TenantContext
类,存储当前租户的上下文信息(比如租户ID),这样在数据库连接的动态切换时,能够正确地根据租户来选择数据源。
public class TenantContext {
private static final ThreadLocal<String> tenantThreadLocal = new ThreadLocal<>();
public static void setTenantId(String tenantId) {
tenantThreadLocal.set(tenantId);
}
public static String getTenantId() {
return tenantThreadLocal.get();
}
public static void clear() {
tenantThreadLocal.remove();
}
}
1.1.3. 配置管理
为了便于管理不同租户的数据库配置,可以使用配置文件、数据库表或者服务中心来动态管理租户的数据库信息。
- 配置文件:在应用启动时读取配置文件中的数据库信息,为每个租户配置独立的连接信息。
- 数据库表:可以设计一张租户配置表,存储每个租户的数据库连接信息(如数据库URL、用户名、密码等)。应用启动时从数据库表中加载这些配置信息。
- 配置中心:使用类似Spring Cloud Config、Apollo等配置管理工具,动态加载租户数据库配置。
1.1.4. 性能优化
- 数据库连接池的最大连接数和最小连接数:合理配置每个租户的数据库连接池参数,避免过多的连接占用数据库资源。
- 连接池隔离:
每个租户的连接池可以设置不同的隔离级别
(如最大连接数、连接超时时间等),根据租户的负载情况动态调整。 - 数据库缓存与索引优化:不同租户的数据量和访问模式可能不同,可以根据具体需求进行数据库的缓存、索引和查询优化,提升性能。
1.1.5. 切换和清理
每次处理完一个请求后,确保清理线程上下文中存储的租户信息,避免跨请求污染。
@PreDestroy
public void cleanup() {
TenantContext.clear(); // 清理租户上下文
}
总结
- 动态数据源:通过
AbstractRoutingDataSource
等机制,根据当前请求的租户ID动态切换数据源。 - 连接池:为每个租户配置独立的数据库连接池,提升性能。
- 租户信息获取:通过请求参数、头信息、Session等方式获取租户ID,并在全局上下文中进行管理。
- 性能优化:合理配置连接池、缓存与数据库查询,确保系统在大规模租户的情况下依然高效。特别是对于不同租户复用同一个数据库连接的情况,限制不同租户的连接资源限制尤为重要。
1.2 独立数据库模型-动态配置
实现思路:
- 在
配置中心
或配置表
中维护租户ID与数据库连接信息。 - 每次请求时,通过租户ID动态查找并使用相应的数据库连接进行查询
- 为了避免频繁查询数据库表获取租户对应的数据库连接,可以引入缓存机制,将每个租户的数据库连接信息缓存到内存中(如使用Redis、Guava Cache等缓存工具)。这样,在系统中读取租户数据库连接时,先检查缓存中是否存在租户信息,若存在则直接从缓存中获取,若不存在则从数据库中查询并更新缓存。
- 为了避免频繁的创建和销毁数据库连接,可以考虑根据需求动态创建数据库连接池,并根据租户ID管理这些连接池。
- 在并发高的场景下,可以采用异步加载或者在应用启动时进行一次性加载,加载数据库信息到缓存或线程池中,以提高性能。
示例:
- 创建租户配置表:
CREATE TABLE tenant_db_config (
tenant_id VARCHAR(50) PRIMARY KEY,
db_url VARCHAR(255),
db_username VARCHAR(100),
db_password VARCHAR(100),
db_driver_class VARCHAR(50)
);
2.数据库连接缓存
public class TenantDataSourceCache {
private static final Cache<String, DataSource> dataSourceCache = CacheBuilder.newBuilder()
.expireAfterAccess(10, TimeUnit.MINUTES) // 缓存有效期
.build();
@Autowired
private JdbcTemplate jdbcTemplate;
public DataSource getTenantDataSource(String tenantId) {
DataSource dataSource = dataSourceCache.getIfPresent(tenantId);
if (dataSource == null) {
// 缓存中没有,则从数据库加载
String sql = "SELECT db_url, db_username, db_password FROM tenant_db_config WHERE tenant_id = ?";
Map<String, Object> config = jdbcTemplate.queryForMap(sql, tenantId);
String dbUrl = (String) config.get("db_url");
String dbUsername = (String) config.get("db_username");
String dbPassword = (String) config.get("db_password");
dataSource = DataSourceBuilder.create()
.url(dbUrl)
.username(dbUsername)
.password(dbPassword)
.build();
// 缓存数据库连接
dataSourceCache.put(tenantId, dataSource);
}
return dataSource;
}
}
3.动态数据库连接池缓存
public class DynamicDataSourceManager {
private final Map<String, HikariDataSource> dataSourceMap = new HashMap<>();
public HikariDataSource getDataSource(String tenantId) {
if (!dataSourceMap.containsKey(tenantId)) {
synchronized (this) {
if (!dataSourceMap.containsKey(tenantId)) {
// 动态创建连接池
HikariDataSource dataSource = new HikariDataSource();
dataSource.setJdbcUrl(getDbUrlForTenant(tenantId));
dataSource.setUsername(getDbUsernameForTenant(tenantId));
dataSource.setPassword(getDbPasswordForTenant(tenantId));
dataSourceMap.put(tenantId, dataSource);
}
}
}
return dataSourceMap.get(tenantId);
}
private String getDbUrlForTenant(String tenantId) {
// 根据租户ID从数据库或配置中加载数据库URL
}
private String getDbUsernameForTenant(String tenantId) {
// 根据租户ID从数据库或配置中加载用户名
}
private String getDbPasswordForTenant(String tenantId) {
// 根据租户ID从数据库或配置中加载密码
}
public void closeDataSource(String tenantId) {
HikariDataSource dataSource = dataSourceMap.remove(tenantId);
if (dataSource != null) {
dataSource.close();
}
}
}
1.3 共享架构模型-不同租户共用一个连接使用不同的数据库实例
同一个连接访问多个 schema 是一种常见的多租户数据库设计方式。
1.优点
- 降低成本:维护一个数据库实例比维护多个数据库实例要节省资源,尤其是当数据库的资源利用率较高时。
- 管理和运维简单:多个租户可以共享一个数据库连接池,节省了连接资源;数据库的管理变得更加集中,可以方便地进行备份、恢复、升级等操作;
2. 缺点
- 性能问题:随着租户数量的增加,数据库实例的表和 schema 数量也会增加,查询和索引的性能可能会受到影响。尤其在 schema 数量多、表结构复杂时,性能调优变得更具挑战性。
- 资源竞争:所有租户共享同一个数据库实例的资源(如 CPU、内存、磁盘 I/O 等),当租户数量增加时,资源可能会变得紧张。尤其在高并发情况下,可能会导致性能瓶颈。
- 单点故障风险:如果整个数据库实例出现故障,所有租户的数据都会受到影响。与多数据库实例设计相比,这种方案的可用性较差。
- 安全隔离性不足:虽然通过 schema 可以在逻辑上隔离租户数据,但在物理上,所有租户的数据都在同一个数据库实例中,这可能会引发安全性和权限管理方面的问题。如果数据库访问权限控制不当,可能会导致租户之间数据的泄漏或不当访问。
对于租户数较少、数据量较小的系统,这种方式是比较高效的;但如果系统需要支撑大量租户和大规模数据,可能需要考虑采用更复杂的架构(例如,独立数据库实例)。
1.4 单一数据库模型——每个表都加租户id字段
注意点
- 性能和扩展性:因为所有租户的数据都存储在同一张表中,所以随着租户数量和数据量的增加,查询效率可能会下降。尤其是在没有合适索引的情况下,查询可能会变得很慢。
- 解决方案:为 tenant_id 和常用的查询字段添加索引,避免全表扫描。可以根据租户的活跃程度调整数据库表的分区策略 或 水平分表来分散存储数据,减轻单一表的压力。
- 数据隔离性和安全性:由于所有租户的数据都存在同一张表中,系统必须非常小心地确保每个查询都加上 tenant_id 过滤条件,否则可能会发生数据泄漏。
- 解决方案:在数据访问层(例如 DAO 或 Repository)中统一加上 tenant_id 过滤条件,或者使用 AOP 等技术确保每个查询都自动带上 tenant_id。最好使用 ORM 框架(如 Hibernate)时,强制租户 ID 做为查询条件。
- 权限和安全问题:由于所有租户的数据都存储在同一数据库实例中,必须确保每个租户只能访问自己的数据。在多租户环境中,特别是在共享表的情况下,权限管理显得尤为重要。
- 解决方案:采用细粒度权限控制机制,确保应用层或数据库层对 tenant_id 的访问做严格校验。可以通过数据库的 行级安全性(Row-Level Security)来增强数据隔离性。
通过为每个表增加 tenant_id 字段来实现多租户隔离,是一种高效且常见的方案。它的优点是简单、容易实现,适用于中小规模的多租户系统。然而,这种方法也存在性能、数据隔离、扩展性等问题。