BSOJ3299 洛谷P1874 快速求和

10 篇文章 0 订阅
2 篇文章 0 订阅
3299 -- 【模拟试题】快速求和

Description

给定一个数字字符串,用最少次数的加法让字符串等于一个给定的目标数字。每次加法就是在字符串的某个位置插入一个加号。在需要的所有加号都插入后,就象做普通加法那样来求值。

例如,考虑字符串"12",做0次加法,我们得到数字12。如果插入1个加号,我们得到3。因此,这个例子中,最少用1次加法就得到数字3。

再举一例,考虑字符串"303"和目标数字6,最佳方法不是"3+0+3",而是"3+03"。能这样做是因为1个数的前导0不会改变它的大小。

写一个程序来实现这个算法。

Input

第1行:1个字符串S(1<= S的长度 <= 40) 和1个整数N。S和N用1个空格分隔。

Output

第1行:1个整数K,表示最少的加法次数让S等于N。如果怎么做都不能让S等于N,则输出-1。

Sample Input

2222 8

Sample Output

3

Hint

【数据范围】

0 ≤ N ≤ 100 000
0 ≤ S ≤ 40


乍一看这道题,该怎么做呢,搜索还是dp,似乎都很好想。
搜索看上去是要TLE的(这样最多就有2^39种可能性),那么有没有什么优秀的剪枝呢?
容易想到也容易实现的剪枝有如下三个:
  • 最优性剪枝:如果当前已加入加号个数大于我的当前最优解,那么return
  • 可行性剪枝:如果当前的累计sum已经大于所求的n,那么return
  • 可行性剪枝:如果当前累计sum加上后面的所有数字(看成一个数)仍小于n,那么return;
仍需注意的是,无论是搜索还是dp,由于s的长度有40位,而 N ≤ 100 000,那么在预处理g[i][j](i到j的值时),我们将大于100000的设为inf即可。

那么dp也还是比较简单的,运用了一些背包的思想的分配类动规,f[i][j]表示我前i个数的累计sum为j,但是这个时候我们发现,同搜索一样,我们需要知道最后一个加号的位置才能进行转移,所以我们可以显而易见的知道这是一个模板,枚举最后一个加号的位置(也就是将前i个数分开的点,分配类动规之本意),但是在写方程时我们也许会遇到一些麻烦,因为我们发现我们不知道前面一个数是否是合法的,所以定义如下:
     bool f[MaxLength+5][MaxValue+5];//前i个数字加+号能否构成j值
     int rec[MaxLength+5][MaxValue+5];//前i个数字构成j值需最少加号数

代码在下面:
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<cstdio>
#define inf 0x3fffffff
using namespace std;
string s;
int g[105][105],last,n,l,ans=inf;
void dfs(int pos,int last,int p,int sum)//pos 当前位置, last 上一个加号的位置, p 加号位置, sum,总和   
{
	if(sum+g[last+1][pos]>n)return ;
	if(sum+g[last+1][l]<n)return ;
	if(p>ans)return ;
	if(pos==l)
	{
		sum+=g[last+1][l];
		if(sum==n)ans=min(ans,p);
		return ;
	}
	dfs(pos+1,last,p,sum);
	dfs(pos+1,pos,p+1,sum+g[last+1][pos]);
}
int main(){
	cin>>s>>n;
	l=s.length();
	s=' '+s;
	for(int i=1;i<=l;i++)
	  g[i][i]=s[i]-'0';

	for(int i=1;i<=l;i++)                 //预处理i-j的值 
	  for(int j=i+1;j<=l;j++)
	    {
	    	g[i][j]=g[i][j-1]*10+s[j]-'0';
	    	if(g[i][j]>inf)g[i][j]=inf;
		}	
	dfs(1,0,0,0);
	if(ans==inf)cout<<-1;
	else cout<<ans;
	return 0;
}

#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<cstdio>
#define inf 100005
using namespace std;
string s;
int g[105][105],n,l,rec[55][100005],f[55][100005];
int main(){
	cin>>s>>n;
	l=s.length();
	s=' '+s;
	for(int i=1;i<=l;i++)
	  g[i][i]=s[i]-'0';

	for(int i=1;i<=l;i++)
	  for(int j=i+1;j<=l;j++)
	    {
	    	g[i][j]=g[i][j-1]*10+s[j]-'0';
	    	if(g[i][j]>inf)g[i][j]=inf;
		}
	for(int i=0;i<=l;i++)
	  for(int j=0;j<=n;j++)
	    rec[i][j]=inf;
	rec[0][0]=0,f[0][0]=1;
	for(int i=1;i<=l;i++)
	  for(int j=1;j<=i;j++)
	    {
	    	if(g[i-j+1][i]>n)break;   //如果值过大,就break,将n(以及下面的两个n)换成inf也可以 ,但是略慢 
	  		for(int k=0;k<=n;k++)
	  		  if(f[i-j][k])
	  		   {
	  		   		if(k+g[i-j+1][i]>n)break;
	  		   		f[i][k+g[i-j+1][i]]=1;
	  		   		rec[i][k+g[i-j+1][i]]=min(rec[i][k+g[i-j+1][i]],rec[i-j][k]+1);
			   }
	    }
	if(rec[l][n]==inf)cout<<-1;
	else cout<<rec[l][n]-1;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值