毕设 人脸识别学生课堂考勤专注检测系统(项目+论文)

0 前言

🔥这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 毕业设计 人脸识别学生课堂考勤专注检测系统(项目+论文)

🥇学长这里给一个题目综合评分(每项满分5分)

难度系数:3分
工作量:3分
创新点:4分

🧿 项目分享:见文末!

1 项目运行效果

在这里插入图片描述在这里插入图片描述在这里插入图片描述

视频效果:

毕业设计 基于人脸识别的学生课堂考勤专注检测系统

2 设计概要

基于深度学习的学生打卡与专注检测系统围绕学校进行在线教学时利用摄像头采集人脸数据,使用python语言实现人脸识别打卡,再根据人脸检测和目标跟踪实现专注检测。借助opencv和tensorflow框架,捕获脸部数据,提取人脸特征,然后通过计算欧式距离来和预存的人脸特征进行对比,从而实现对学生的识别打卡,利用检测和跟踪算法计算出专注时长,当学生没有专注听课一段时间后就会对学生做出提醒。

在这里插入图片描述

3 设计框架

人脸识别模块首先通过调取视频中的人脸图像视频帧,对视频帧的人脸图像进行相应的特征提取、人脸信息对比[11 ],从而识别判断出学生的个人信息。用例图如下图所示;

在这里插入图片描述
从图3-3可以知道人脸识别的过程是一个较为复杂的过程,需要进行乙烯类步骤最后与存录的人脸信息库中的数据进行判断。如果显示为存在的人脸信息,则会显示出学生的学号信息、姓名信息[12 ]。相关活动图可以更加清楚地展示人脸识别的具体流程,如下图所示活动图:

在这里插入图片描述

图3-3通过系统人脸识别功能的活动图使得各功能模块的组织关系得以清晰展现,具体识别过程可以通过时序图得到清晰展示,如下图的顺序图3-4所示:
在这里插入图片描述
根据图3-8可知,系统界面中主要显示出人脸识别和注意力信息,在人脸识别注视图中包含了人脸特征试图保存、图像视图录入、人脸识别考勤打卡和注意力检测边界类。主要包含学生、人脸特征、注意力信息、图像等实体类。同时对人脸特征、图像进行管理,在存有的人脸图像中可以获取人脸特征。此外,还包含摄像头控制类,进而可以通过摄像头对捕获视频中的人脸图像,并且进行之后的人脸检测识别、注意力监督等功能提供基础条件。系统仍然需要使用预先训练好的模型进行识别和注意力检测的功能实现,模型会以接口的形式,故在需要调用模型的时候直接运行相关的接口即可[14 ]。系统的概要类图如下图所示:

在这里插入图片描述

篇幅有限,更多详细设计见设计论文

4 最后

项目包含内容

在这里插入图片描述

完整详细设计论文
在这里插入图片描述
🧿 项目分享:见文末!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值