各种常见排序算法归纳总结

class sort_algorithm
{
public:
	int array[MAXN];
	int n;
public:
	sort_algorithm() { }
	~sort_algorithm() { }
	/*插入排序 复杂度O(n^2) 稳定排序*/
	void Insertion_sort()
	{
		for (int i = 2; i <= n; i++)
		{
			int key = array[i];
			int j = i - 1;
			while (j >= 1 && array[j] > key)
			{
				array[j + 1] = array[j];
				j--;
			}
			array[j + 1] = key;
		}
	}
	//希尔排序 复杂度 O(nlog^2 n) 不稳定排序
	void shell_sort()
	{
		for (int gap = n / 2; gap >= 1; gap >>= 1)
		{
			for (int i = gap; i <= n; i++)
			{
				int key = array[i];
				int j = i - gap;
				while (j >= 1 && array[j] > key)
				{
					array[j + gap] = array[j];
					j -= gap;
				}
				array[j + gap] = key;
			}
		}
	}
	/*冒泡排序 复杂度O(n^2) 稳定排序*/
	void bubble_sort()
	{
		for (int i = n; i >= 2; i--)
		{
			for (int j = 1; j <= i - 1; j++)
			{
				if (array[j + 1] < array[j])
					swap(array[j], array[j + 1]);
			}
		}
	}
	/*优化版冒泡排序 复杂度O(n^2) 稳定排序*/
	void bubble_sort2()
	{
		int bound = n;
		while (bound != 0)
		{
			int t = 0;
			for (int i = 1; i <= bound - 1; i++)
			{
				if (array[i] > array[i + 1])
					swap(array[i], array[i + 1]);
				t = i;
			}
			bound = t;
		}
	}
	/*选择排序 复杂度O(n^2) 不稳定排序*/
	void select_sort()
	{
		for (int i = n; i >= 2; i--)
		{
			int t = 1;
			for (int j = 2; j <= i; j++)
			{
				if (array[t] < array[j])
					t = j;
			}
			swap(array[t], array[i]);
		}
	}
	/*归并排序 复杂度O(logn) 稳定排序*/
	void merge(int l, int mid, int r)
	{
		int i = l, j = mid + 1;
		int n = mid, m = r;
		int k = 0;
		int temp[MAXN];
		while (i <= n && j <= m)
		{
			if (array[i] <= array[j])
				temp[k++]= array[i++];
			else temp[k++] = array[j++];
		}
		while (i <= n) temp[k++] = array[i++];
		while (j <= m) temp[k++] = array[j++];
		for (i = 0; i < k;i++)
			array[l + i] = temp[i];
	}
	void merge_sort(int l, int r)
	{
		if (l < r)
		{
			int m = (l + r) >> 1;
			merge_sort(l, m);
			merge_sort(m + 1, r);
			merge(l, m, r);
		}
	}
	/*堆排序 复杂度 O(logn) 不稳定排序*/
	void heapadjust(int i,int size)
	{//建立递增序列,使用大根堆
		int lson = i << 1;
		int rson = i << 1|1;
		int mx = i;
		if(i <= size / 2)
		{
			if (lson <= size && array[lson] > array[mx])
				mx = lson;
			if (rson <= size && array[rson] > array[mx])
				mx = rson;
			if (mx != i)
			{
				swap(array[i], array[mx]);
				heapadjust(mx,size);
			}
		}
	}
	void buildheap()
	{
		for (int i = n / 2; i >= 1; i--)
		{
			heapadjust(i, n);
		}
	}
	void heap_sort()
	{
		buildheap();
		for (int i = n; i >= 1; i--)
		{
			swap(array[1], array[i]);
			heapadjust(1, i-1);
		}
	}
	/*快速排序 复杂度O(logn) 不稳定排序*/
	void quick_sort(int l, int r)
	{
		if (l < r)
		{
			int i = l, j = r, x = array[l];
			while (i < j)
			{
				while (i < j && array[j] >= x) j--;
				if (i < j) array[i++] = array[j];
				while (i < j && array[i] < x) i++;
				if (i < j) array[j--] = array[i];
			}
			array[i] = x;
			quick_sort(l, i-1);
			quick_sort(i + 1, r);
		}
	}
};
istream &operator >> (istream &is, sort_algorithm &item)
{
	is >> item.n;
	for (int i = 1; i <= item.n; i++)
		is >> item.array[i];
	return is;
}
ostream &operator << (ostream &os, const sort_algorithm &item)
{
	os << item.n << endl;
	for (int i = 1; i <= item.n; i++)
		os << item.array[i] << ' ';
	os << endl;
	return os;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值