UVA 10245 The Closest Pair Problem(平面最近点对)

解题思路:
分治法求平面最近点对。

将所有点排序后,最近点对的距离就是下面两者的最小值:

(1) 两点p, q 同属于左半边或右半边时点对(p, q ) 的距离;

(2) 两点p, q属于不同区域时,距离小于d的点对(p, q)的距离。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <algorithm>
#define LL long long
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAXN = 10000 + 10;
const double eps = 1e-6;
int N;
typedef pair<double, double> Point;
Point A[MAXN];
bool compare_y(Point a, Point b)
{
    return a.second < b.second;
}
double closest_pair(Point *a, int n)
{
    if(n <= 1) return INF;
    int m = n / 2;
    double x = a[m].first;
    double d = min(closest_pair(a, m), closest_pair(a + m, n - m));
    inplace_merge(a, a + m, a + n, compare_y);
    vector<Point> b;
    for(int i=0;i<n;i++)
    {
        if(fabs(a[i].first - x) >= d)
            continue;

        for(int j=0;j<b.size();j++)
        {
            double dx = a[i].first - b[b.size()-j-1].first;
            double dy = a[i].second - b[b.size()-j-1].second;
            if(dy >= d) break;
            d = min(d, sqrt(dx * dx + dy * dy));
        }
        b.push_back(a[i]);
    }
    return d;
}
void solve()
{
    sort(A, A + N);
    double ans = closest_pair(A, N);
    if(ans >= 10000) cout << "INFINITY" << endl;
    else printf("%.4lf\n", ans);
}
int main()
{
    while(scanf("%d", &N)!=EOF)
    {
        if(N == 0)
            break;
        for(int i=0;i<N;i++)
            scanf("%lf%lf", &A[i].first, &A[i].second);
        solve();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值