Attention Models in Graphs: A Survey 翻译

Attention Models in Graphs: A Survey

TYPES OF GRAPH ATTENTION MECHANISM

应用于图结构数据的三种主要注意力机制方法:学习注意力权重,基于相似性的注意力,注意力引导的游走法。这三种注意力机制具有相同的目的或意图,但是他们在定义或实现注意力机制的方法方面存在差异。

解释(图注意力):给定一个目标图对象(eg:节点,边,图等), v 0 v_0 v0 和 一个在 v 0 v_0 v0的邻域 { v 1 , ⋯   , v ∣ Γ v 0 ∣ } ∈ Γ v 0 \left\{v_{1}, \cdots, v_{\left|\Gamma_{v_{0}}\right|}\right\} \in \Gamma_{v_{0}} {v1,,vΓv0}Γv0内的图对象集合。注意力被定义为将 Γ v 0 \Gamma_{v_{0}} Γv0中每个对象映射到相关性得分的函数 f ′ : { v 0 } × Γ v 0 → [ 0 , 1 ] f^{\prime} :\left\{v_{0}\right\} \times \Gamma_{v_{0}} \rightarrow[0,1] f:{v0}×Γv0[0,1],该相关性得分表示每个特定相邻对象的关注程度。而且满足:
∑ i = 1 ∣ Γ v 0 ∣ f ′ ( v 0 , v i ) = 1 \sum_{i=1}^{\left|\Gamma_{v_{0}}\right|} f^{\prime}\left(v_{0}, v_{i}\right)=1 i=1Γv0f(v0,vi)=1

1、学习注意力权重

对于给定 v 0 , v 1 , ⋯   , v ∣ Γ x 0 ∣ v_{0}, v_{1}, \cdots, v_{\left|\Gamma_{x_{0}}\right|} v0,v1,,vΓx0的相应的属性/特征 x 0 , x 1 , ⋯   , x ∣ Γ o ∗ ∣ \mathbf{x}_{0}, \mathbf{x}_{1}, \cdots, \mathbf{x}_{ | \Gamma_{o^{*}}} | x0,x1,,xΓo ,注意力权重可以通过以下公式计算:

α 0 , j = e 0 , j ∑ k ∈ Γ v 0 e 0 , k \alpha_{0, j}=\frac{e_{0, j}}{\sum_{k \in \Gamma_{v_{0}}} e_{0, k}} α0,j=kΓv0e0,ke0,j

其中, e 0 , j e_{0, j} e0,j 表示与 v 0 v_0 v0相邻的节点 v j v_j vj

在实际中,通过考虑他们的属性,可以利用带有可训练函数的softmax函数来计算 v j v_j vj v 0 v_0 v0间的相关性。在 GAT 中实现的公式如下:

α 0 , j = exp ⁡ (  LeakyReLU  ( a [ W x 0 ∥ W x j ] ) ) ∑ k ∈ Γ v 0 exp ⁡ (  LeakyReLU  ( a [ W x 0 ∥ W x k ] ) ) \alpha_{0, j}=\frac{\exp \left(\text { LeakyReLU }\left(\mathrm{a}\left[\mathrm{Wx}_{0} \| \mathrm{W} \mathrm{x}_{j}\right]\right)\right)}{\sum_{k \in \Gamma_{v_{0}}} \exp \left(\text { LeakyReLU }\left(\mathbf{a}\left[\mathbf{W} \mathbf{x}_{0} \| \mathbf{W} \mathbf{x}_{k}\right]\right)\right)} α0,j=kΓv0exp( LeakyReLU (a[Wx0Wxk]))exp( LeakyReLU (a[Wx0Wxj]))

其中, a a a 表示一个可训练的注意力向量, W W W 输入特征映射到隐藏空间的可训练权重矩阵, ∣ ∣ || ∣∣表示连接。

如上图,对于一个目标对象 v 0 v_0 v0,在邻域中对对象 i i i分配一个重要的权重 a ( 0 , i ) a_(0,i) a(0,i)。通过测试 v 0 v_0 v0 v i v_i vi x 0 x_0 x0 x i x_i xi 的隐藏嵌入来分配重要性的函数来实现。

2 基于相似性的注意力

对于给定的具有相关性的属性或特征,基于相似性的注意力能够学习除了关键的差异之外的相似性。同时,该方法更多的关注那些具有相似性的隐藏表示或特征的对象。如下公式所示:

α 0 , j = exp ⁡ ( β ⋅ cos ⁡ ( W x 0 , W x j ) ) ∑ k ∈ Γ v 0 exp ⁡ ( β ⋅ cos ⁡ ( W x 0 , W x k ) ) \alpha_{0, j}=\frac{\exp \left(\beta \cdot \cos \left(\mathbf{W} \mathbf{x}_{0}, \mathbf{W} \mathbf{x}_{j}\right)\right)}{\sum_{k \in \Gamma_{v_{0}}} \exp \left(\beta \cdot \cos \left(\mathbf{W} \mathbf{x}_{0}, \mathbf{W} \mathbf{x}_{k}\right)\right)} α0,j=kΓv0exp(βcos(Wx0,Wxk))exp(βcos(Wx0,Wxj))

其中, β \beta β 表示可训练偏差, W W W 表示从输入映射到隐藏空间的可训练权重矩阵。

该方法的定义和学习注意力权重的方法相似,主要的区别在于,该模型显示地为彼此相关地对象学习类似地隐藏嵌入,因为该模型主要关注于基于相似性或对齐。

3 注意力引导的游走法

前两种基于注意力的方法主要将注意力集中于选择相关的信息,并将这些信息整合到目标对象的隐藏表示中。第三种基于注意力的方法主要的不同的在于使用了 GAM。

GAM方法在输入图上采取一系列步骤,并使用RNN对已访问节点进行编码,以构建子图嵌入。

在时间t的RNN隐藏状态, h t ∈ R h \mathbf{h}_{t} \in \mathbb{R}^{h} htRh 对来自步骤 1 , ⋯   , t 1, \cdots, t 1,,t中已访问的节点信息进行编码。然后,定义基于注意力的函数 f ′ : R h → R k f^{\prime} : \mathbb{R}^{h} \rightarrow \mathbb{R}^{k} f:RhRk,用于将输入的隐藏向量 f ′ ( h t ) = r t + 1 f^{\prime}\left(\mathbf{h}_{t}\right)=\mathbf{r}_{t+1} f(ht)=rt+1映射到一个k维秩向量中,它告诉我们下一步需要优先考虑哪些k类型节点,以帮助模型为下一步确定特定类型的相邻节点优先级。如下图所示:

如上图,隐藏嵌入 h 3 h_3 h3表示在长度 L = 3 L=3 L=3的行走之后的信息 ( x 1 , ⋯   , x 3 ) \left(x_{1}, \cdots, x_{3}\right) (x1,,x3),并将该信息输入到排序函数中,以确定各个邻接节点的重要性并用于下一步。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值