论文阅读笔记-Are Pre-trained Convolutions Better than Pre-trained Transformers?

前言

Transformer诞生到现在,从NLP领域到CV领域,可以说是两开花。特别是在预训练模型中,BERT相关系列近些年屡屡突破,在各种下游任务中,不仅能提速还有效果上的提升。所以在NLP的相关任务中,提及Transformer和CNN时,Transformer一般都会优先考虑,更何况是在预训练语言模型方面,我以前都没有想过将CNN用在预训练,直到看到这篇文章,才打开了新思路,看来还是我格局小了呀。

正如论文标题一样:Are Pre-trained Convolutions Better than Pre-trained Transformers?这篇文章并没有能够将“CNN预训练优于Transformer预训练”这个结论石锤,不过从某种程度上说,还是将BERT、transformers和大规模预训练模型进行解耦,给我们打开了新世界,接下来我们就一起来品一品这篇文章。

前情提要

这篇文章其实围绕三个问题要讨论:

  • 只有类Transformers的结构才适合预训练?
  • 如果使用不同于Transformers结构的模型来进行预训练,是否能够提高收益?
  • 使用卷积进行预训练是否在特定的场景表现更好?

在正式研究和讨论之前,还有几点需要达成共识的,根据以往的研究表明,卷积有着如下的优势:

  • CNN 比 self-attention 快得多:CNN 是线性复杂度,self-attention 是平方复杂度(甚至因此诞生了《轻量 transformers》这个分支领域)。
  • CNN 是按顺序进行的,因此不需要如Transformers那样,需要额外的位置编码。

不过还是需要注意的是,CNN 在单层的感受野大小是有限且固定的,只能通过堆叠层数来增大感受野,而self-attention 在一层就可以捕捉所有 token 之间的关系,这对于捕捉长距离依赖非常关键。同时,self-attention 聚合的权重是与输入 token 相关的,而 CNN 的聚合权重是与输入 token 无关的。

文章涉及到对比卷积的运行速度,我之前写过一篇如何根据FLOPs或MACC去大致的计算模型的速度,感兴趣的可以参考如下:
教你如何估计各种神经网络的计算量和参数量

我们来简单过一遍论文中使用到的卷积:

  • Depthwise Convolutions:深度可分离卷积中,每个通道只被一个卷积核所卷积,这里我们假设输入的张量 X X X 的维度大小为 n × d n\times d n×d,那么深度可分离卷积 D ( X , W c : , i , c ) D(X,W_{c:},i,c) D(X,Wc:,i,c) 可以被定义为:
    O i , c = ∑ j − 1 k W c , j ⋅ X i + j − ⌈ k + 1 2 ⌉ , c O_{i,c}=\sum_{j-1}^k W_{c,j}\cdot X_{i+j-\left \lceil \frac{k+1}{2} \right \rceil},c Oi,c=j1kWc,jXi+j2k+1,c
    其中, W ∈ R d × k W\in \mathbb{R}^{d\times k} WRd×k是可训练参数, O i , c O_{i,c} Oi,c是通道 c c c的第 i i i 个位置的输出,输出的shape和输入的shape相同,都是 n × d n\times d n×d
  • Lightweight Convolutions:轻量化卷积对深度可分离卷积做了进一步地简化,这里我们令 L
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨痕_777

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值