- 博客(12)
- 收藏
- 关注
原创 温度监测论述
前 言本文从传统的人类体温测量开始展开介绍非接触式温度测量的实现原理,以及结合人工智能技术的体温监测技术。温度测量方法温度测量的目的是将物体(如人体)的温度更加接近“实际”温度的用数字表述出来。而人体温度是指人体的表面温度,正常一般在3637摄氏度。这里的3637摄氏度一般指人类体表(腋窝)的温度,医疗上的还有体内温度,体内温度这里不展开讨论,本文主要讨论的是体表体温的测量。温度的测量(包...
2020-03-02 16:29:10 1525
原创 矢量卷积和神经网格基础(2)信号感应
咪付技术带头人代豪是矢量卷积和神经网格模型的提出者和建立者,本文将简单阐述矢量卷积和神经网格模型的信号感应方式。信号的基本感应方式矢量卷积和神经网格模型的信号感应方式分静态感应和动态感应两种方式。当信号阶跃为0时,主要表现为静态感应;当信号阶跃不为0时,主要表现为动态感应。由于信号阶跃是有方向的,并且有随时间和位置变化的特点,因此我们在坐标框架中加以描述,坐标框架又分为位置坐标框架和时间坐标框...
2019-10-23 14:51:00 509
原创 机器学习中的评价指标
前 言在人工智能领域,机器学习的效果需要用各种指标来评价。本文将阐述机器学习中的常用性能评价指标,矢量卷积与神经网格的评价指标不包括在内。训练与识别当一个机器学习模型建立好了之后,即模型训练已经完成,我们就可以利用这个模型进行分类识别。比如,给模型输入一张电动车的照片,模型能够识别出这是一辆电动车;输入一辆摩托车的照片,模型能够识别出这是一辆摩托车。前提是:在模型训练过程中,进行了大量电动...
2019-09-09 14:23:37 920
原创 矢量卷积和神经网格基础(1)信号阶跃
咪付的全态识别自发布以来,受到了业界的广泛关注,这离不开技术带头人深厚的技术积累,以及研发团队对新技术的执着专研。技术带头人代豪是矢量卷积和神经网格模型的提出者和建立者,本文将是对此理论模型的基础之一信号阶跃的简单阐述。生命的特性之一是对变化的感知,变化的本质则是信号的阶跃。以视觉为例,客观世界通过光线反映到感受体(如眼睛),感受体里形成的图像就是信号阶跃的集合。图像感知人们可以通过眼睛来判...
2019-08-28 15:01:39 658
原创 SVM分类器原来这么简单
前 言SVM,英文全称为 Support Vector Machine,中文名为支持向量机,由数学家Vapnik等人早在1963年提出。在深度学习兴起之前,SVM一度风光无限,是机器学习近几十年来最为经典的,也是最受欢迎的分类方法之一。1SVM与“三八线”不少人在初识SVM时会感觉到高深难懂。现在,就从你我熟知的“三八线”来走进SVM的思想内涵。回忆下小时候,同桌同学经常会用粉笔或是小刀...
2019-07-22 11:49:21 3567 3
原创 机器学习中的分类距离
生活中,距离通常是用于形容两个地方或两个物体之间的远近。在人工智能机器学习领域,常使用距离来衡量两个样本之间的相似度。“物以类聚”我们知道“物以类聚”通常用于比喻同类的东西经常聚在一起。机器学习中,距离就是遵循物以类聚的思想。通过两个样本特征数据进行距离计算后,得到的距离值越小,代表两者的相似度越高,属于同一类的可能性就越高。换句话说,距离能够决定样本的归属。例如,在下图中,对于机器学习来说...
2019-07-05 14:43:38 703
原创 从MobileNet看轻量级神经网络的发展
随着深度学习的火热,计算机视觉领域内的卷积神经网络模型也层出不穷。从1998年的LeNet,到2012年引爆深度学习热潮的AlexNet,再到后来2014年的VGG,2015年的ResNet,深度学习网络模型在图像处理中应用的效果越来越好。神经网络体积越来越大,结构越来越复杂,预测和训练需要的硬件资源也逐步增多,往往只能在高算力的服务器中运行深度学习神经网络模型。移动设备因硬件资源和算力的限制,很...
2019-07-03 17:34:42 2413 1
原创 深度学习中,CPU、GPU、NPU、FPGA如何发挥优势?
随着AI的广泛应用,深度学习已成为当前AI研究和运用的主流方式。面对海量数据的并行运算,AI对于算力的要求不断提升,对硬件的运算速度及功耗提出了更高的要求。目前,除通用CPU外,作为硬件加速的GPU、NPU、FPGA等一些芯片处理器在深度学习的不同应用中发挥着各自的优势,但孰优孰劣?以人脸识别为例,其处理基本流程及对应功能模块所需的算力分布如下:为什么会有这样的应用区分?意义在哪里?想...
2019-06-13 17:59:36 8970 2
原创 2D与3D人脸识别详解
人脸是人体最重要的生物特征之一,而人脸研究主要集中在人脸识别方面,人脸的表达模型分为2D人脸和3D人脸。2D人脸识别研究的时间相对较长,方法流程也相对成熟,在多个领域都有使用,但由于2D信息存在深度数据丢失的局限性,无法完整的表达出真实人脸,所以在实际应用中存在着一些不足,例如识别准确率不高、活体检测准确率不高等。3D人脸模型比2D人脸模型有更强的描述能力,能更好的表达出真实人脸,所以基于3D数...
2019-06-13 17:52:56 19970 3
原创 为Kubernetes选择合适的容器运行时
前 言作为后台支撑,Kubernetes优势明显,具有自动化部署、服务伸缩、故障自我修复、负载均衡等特性。咪付的蓝牙过闸系统和全态识别AI系统的后台支撑采用了Kubernetes,经过线上的长期运行,其状态良好运行平稳。蓝牙过闸系统和全态识别AI系统有着不同的数据特性,对数据的安全要求及运行效率也各不一样,因此如何选择容器的运行时成为了一个重点考虑的因素。本文将介绍Kubernetes支持哪...
2019-06-13 17:06:58 1110
原创 Kubernetes API 安全机制详解
前 言作为后台支撑,Kubernetes优势明显,咪付的蓝牙过闸系统和全态识别AI系统的后台支撑采用了Kubernetes。Kubernetes平台稳定运行一个重要因素是安全性的有效保障,其中API的访问安全是一个重要方面,本文讲解Kubernetes如何保证API访问的安全性。本篇文章包含以下内容:介绍Kubernetes API安全防护措施如何对用户身份进行认证如何对访问资源进行鉴权...
2019-06-13 16:40:58 1389
原创 简析Go与Java内存管理的差异
前言从实践中看,Golang(以下简称Go)应用程序比Java占用更少的内存,这与它们的运行时环境有关,其运行时自带了内存动态分配和自动垃圾回收的管理机制,本文通过分析Go与Java在内存管理机制上的差异,以期对两者在运行时内存方面有更进一步的认识。本文以Go(1.12)和当前使用较多的JDK8 HotSpot VM为例进行说明。本篇文章包含以下内容:介绍Go与Java的运行时内存结构差异...
2019-06-13 15:40:02 2170
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人