【论文阅读】Community Structure in Time-Dependent, Multiscale, and Multiplex Networks

论文探讨了在网络科学中,如何在时间依赖、多尺度和多层网络上检测社区结构。提出了结合Laplacian动力学和‘空模型’思想的新方法,解决了传统方法在处理动态网络时的不足。通过实例展示了方法的有效性,尤其是在美国大选数据上的应用,揭示了政党社区随时间的变化趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址

这篇论文相比之前一篇读起来有点吃力,一是生词有点多,二是牵扯到过多的专业知识,很多框架结构多是其他论文中提到的,对于论文的实现细节无法深究,但能大概明白文章做了什么事。

网络科学(Network Science)是一门跨专业的学科,一个重要的问题就是网络节点中社区(community)的检测,就是将网络中关系密切的一些节点归为一个集合,称为community。本文提出了一种方法可以解决在以时间为分片的多尺度网络上检测community的问题。

之前的检测方法是使用一个quality function来比较community内节点的边与随机节点的差别。而这种方法需要一个特别的“空模型”(null model),我的理解是使用这样的一个“空模型”,然后按照一定的规则,对每个节点进行分析,得出这个节点应该属于哪个community,就将该节点分配过去,直到所有节点都分配完成。

但是这样的模型对于时间依赖(time-dependent)的网络就不适用了,因为在这样的网络中,不仅每个分片中网络节点存在联系,同一个节点在不同的时间分片中也存在着联系。本文利用了“空模型”的思想和Laplacian dynamics得出了一种检测方法。

论文的具体实现细节和公式实在是有难度,我想谈谈我对论文中的几张图的理解:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值