这篇论文相比之前一篇读起来有点吃力,一是生词有点多,二是牵扯到过多的专业知识,很多框架结构多是其他论文中提到的,对于论文的实现细节无法深究,但能大概明白文章做了什么事。
网络科学(Network Science)是一门跨专业的学科,一个重要的问题就是网络节点中社区(community)的检测,就是将网络中关系密切的一些节点归为一个集合,称为community。本文提出了一种方法可以解决在以时间为分片的多尺度网络上检测community的问题。
之前的检测方法是使用一个quality function来比较community内节点的边与随机节点的差别。而这种方法需要一个特别的“空模型”(null model),我的理解是使用这样的一个“空模型”,然后按照一定的规则,对每个节点进行分析,得出这个节点应该属于哪个community,就将该节点分配过去,直到所有节点都分配完成。
但是这样的模型对于时间依赖(time-dependent)的网络就不适用了,因为在这样的网络中,不仅每个分片中网络节点存在联系,同一个节点在不同的时间分片中也存在着联系。本文利用了“空模型”的思想和Laplacian dynamics得出了一种检测方法。
论文的具体实现细节和公式实在是有难度,我想谈谈我对论文中的几张图的理解: