LeetCode127—Word Ladder(我觉得还挺难的,比如如何判断邻居节点,怎样记录路径长度,感觉有点像DP)

Word Ladder

Given two words (start and end), and a dictionary, find the length of shortest transformation sequence from start to end, such that:

  1. Only one letter can be changed at a time
  2. Each intermediate word must exist in the dictionary

For example,

Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]

As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
return its length 5.

Note:

    • Return 0 if there is no such transformation sequence.
    • All words have the same length.
    • All words contain only lowercase alphabetic characters.

 

最短搜索路径,所以是广度优先搜索(BFS)。

有几个问题需要注意:

1、怎样判断是否为邻居节点?

按照定义,存在一个字母差异的单词为邻居,因此采用逐位替换字母并查找字典的方法寻找邻居。

(逐个比对字典里单词也可以做,但是在这题的情况下,时间复杂度会变高,容易TLE)

2、怎样记录路径长度?

对队列中的每个单词记录路径长度。从start进入队列记作1.

长度为i的字母的邻居,如果没有访问过,则路径长度为i+1

可以用struct,也可以用queue<pair<string,int>> q;


struct Node{
    string word;
    int len;//到达这个字符串所走的长度
    Node(string w,int l):word(w),len(l){}
};
class Solution {
public:
    int ladderLength(string beginWord, string endWord, vector<string>& wordList) {
        unordered_set<string> wordDict(wordList.begin(),wordList.end());
        queue<Node*> q;
        unordered_map<string,bool> m;
        Node* beginnode =new Node(beginWord,1);
        q.push(beginnode);
        m[beginWord]=true;
        while(!q.empty())
        {
            Node* frontnode=q.front();
            q.pop();
            string frontword=frontnode->word;
            //查找邻居
            for(int i=0;i<frontword.size();i++)
            {
                for(char c='a';c<='z';c++)
                {
                    if(c==frontword[i]) continue;
                    string frontwordcp=frontword;
                    frontwordcp[i]=c;
                    
                    if(wordDict.find(frontwordcp)!=wordDict.end()&&frontwordcp==endWord) 
                    {
                        
                        return frontnode->len+1;
                        
                    }
                    if(wordDict.find(frontwordcp)!=wordDict.end()&&m[frontwordcp]==false)
                    {
                        int lentmp=frontnode->len+1;
                        //printf("lentmp=%d\n",lentmp);
                        Node* neighborNode=new Node(frontwordcp,lentmp);
                        //printf("neighborNode len=%d")
                        //printf("frontnode->len=%d frontwordcp=%s neighborNode->len=%d\n",frontnode->len,neighborNode->word.c_str(),neighborNode->len);
                        q.push(neighborNode);
                        m[frontwordcp]=true;
                    }
                }
            }
        }
        return 0; 
    }
};

  
    class Solution {
public:
    int ladderLength(string start, string end, vector<string>& wordList) {
          unordered_set<string> dict(wordList.begin(),wordList.end());
          return BFS(start,end,dict);
    }
private:
        int BFS(string start,string end,unordered_set<string> &dict){
            // 存放单词和单词所在层次
            queue<pair<string,int> > q;
            q.push(make_pair(start,1));
            unordered_set<string> visited;
            visited.insert(start);
            // 广搜
            bool found = false;
            while(!q.empty()){
                pair<string,int> cur = q.front();
                q.pop();
                string word = cur.first;
                int len = word.size();
                // 变换一位字符
                for(int i = 0;i < len;++i){
                    string newWord(word);
                    for(int j = 0;j < 26;++j){
                        newWord[i] = 'a' + j;
                        if(dict.count(newWord) > 0&&newWord == end){
                            found = true;
                            return cur.second+1;
                        }//if
                        // 判断是否在字典中并且是否已经访问过
                        if(dict.count(newWord) > 0 && visited.count(newWord) == 0){
                            visited.insert(newWord);
                            q.push(make_pair(newWord,cur.second+1));
                        }//if
                    }//for
                }//for
            }//while
            if(!found){
                return 0;
            }//if
        }
    };



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值