目录
生产者的分区策略(也就是按什么策略往partition里面写数据)
ack应答机制(设置不同的可靠性级别解决数据的丢失和数据重复)
Exactly Once 实现幂等性,保证数据既不丢失也不重复
生产者的分区策略(也就是按什么策略往partition里面写数据)
我们需要将 producer 发送的数据封装成一个 ProducerRecord 对象
- 指明 partition 的情况下,直接将指明的值直接作为 partition 值;
- 没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 个数进行取余得到 partition 值;
- 既没有 partition 值又没有 key 值的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与 topic 可用的 partition 个数取余得到 partition 值,也就是常说的 round-robin 算法。轮询插入;
生产者发送数据可靠性
为保证 producer 发送的数据,能可靠的发送到指定的 topic,topic 的每个 partition 收到 producer 发送的数据后,都需要向 producer 发送 ack(acknowledgement 确认收到),如果 producer 收到 ack,就会进行下一轮的发送,否则重新发送数据。
ack发送时间?:
确保有follower与leader同步数据完成, leader再发送ack,这样才能保证leader 挂掉之后,能在follower中选举出新的 leader
多少个follower同步完数据才发送ack?:
半数以上follower同步数据完成 或者 全部follower同步数据完成
半数以上
- 优点:延迟低
- 缺点:选举新的 leader 时,容忍 n 台节点的故障,需要 2n+1 个副本,副本多;数据冗余;(同步的少,需要的副本就多)
全部(特指ISR中的)
- 优点:选举新的 leader 时,容忍 n 台节点的故障,需要 n+1 个副本,副本少;(同步的多,需要的副本就少)
- 缺点:延迟高
所以kafka选择了全部follower同步数据完成才发送ack
ISR
采用全部follower同步数据完成才发送ack方案之后,设想以下情景:leader 收到数据,所有 follower 都开始同步数据, 但有一个 follower,因为某种故障,迟迟不能与 leader 进行同步,那 leader 就要一直等下去, 直到它完成同步,才能发送 ack。这个问题怎么解决呢?
解决:Leader维护了一个动态的 in-sync replica set (ISR),意为和 leader 保持同步的 follower 集合。当 ISR 中的 follower 完成数据的同步之后,leader 就会给 follower 发送 ack。如果 follower 长时间未向 leader 同步数据 , 则该 follower 将被踢出 ISR , 该时间阈值由 replica.lag.time.max.ms 参数设定。Leader 发生故障之后,就会从 ISR 中选举新的 leader。
所以ISR的作用有两个:ISR的follower都同步完数据开始发送ack,从ISR中选举新的leader
ack应答机制(设置不同的可靠性级别解决数据的丢失和数据重复)
对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失, 所以没必要等 ISR 中的 follower 全部接收成功。 所以 Kafka 为用户提供了三种可靠性级别,用户根据对可靠性和延迟的要求进行权衡
- 0:producer 不等待 broker 的 ack,这一操作提供了一个最低的延迟,broker 一接收到还没有写入磁盘就已经返回,当 broker 故障时有可能丢失数据;
- 1:producer 等待 broker 的 ack,partition 的 leader 落盘成功后返回 ack,如果在 follower 同步成功之前 leader 故障,那么将会丢失数据;
- -1(all):producer 等待 broker 的 ack,partition 的 leader 和 follower(ISR中)全部落盘成功后才 返回 ack。但是如果在 follower 同步完成后,broker 发送 ack 之前,leader 发生故障,那么会造成数据重复,因为生产者没有收到ack会重新发送数据到新选举出来的leader;
HW(保证数据的一致性)
LEO:指的是每个副本最后一个 offset;
HW:指的是消费者能见到的最大的 offset,ISR 队列中最小的 LEO,所有副本中最小的 LEO。
(1)follower 故障: follower 发生故障后会被临时踢出 ISR,待该 follower 恢复后,follower 会读取本地磁盘记录的上次的 HW,并将 log 文件高于 HW 的部分截取掉,从 HW 开始向 leader 进行同步。 等该 follower 的 LEO 大于等于该 Partition 的 HW,即 follower 追上 leader 之后,就可以重新加入 ISR 了。
(2)leader 故障: leader 发生故障之后,会从 ISR 中选出一个新的 leader,之后,为保证多个副本之间的数据一致性,其余的 follower 会先将各自的 log 文件高于 HW 的部分截掉,然后从新的 leader 同步数据。
注意:这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。
Exactly Once 实现幂等性,保证数据既不丢失也不重复
At Least Once(至少发一次):将服务器的 ACK 级别设置为-1,可以保证 Producer 到 Server 之间不会丢失数据,即 At Least Once 语义。At Least Once 可以保证数据不丢失,但是不能保证数据不重复。
At Most Once(最多发一次):将服务器 ACK 级别设置为 0,可以保证生产者每条消息只会被发送一次,即 At Most Once 语义。At Least Once 可以保证数据不重复,但是不能保证数据不丢失;
Exactly Once(发一次且数据准确):但是,对于一些非常重要的信息,比如说交易数据,下游数据消费者要求数据既不重复也不丢失,即 Exactly Once 语义。
怎样做到Exactly Once:
- 在 0.11 版 本以前的 Kafka,对此是无能为力的,只能保证数据不丢失,再在下游消费者对数据做全局去重。对于多个下游应用的情况,每个都需要单独做全局去重,这就对性能造成了很大影响。
- 0.11 版本的 Kafka,引入了一项重大特性:幂等性。所谓的幂等性就是指 Producer 不论 向 Server 发送多少次重复数据,Server 端都只会持久化一条。幂等性结合 At Least Once 语 义,就构成了 Kafka 的 Exactly Once 语义。即: At Least Once + 幂等性 = Exactly Once 要启用幂等性,只需要将 Producer 的参数中 enable.idompotence 设置为 true 即可。
新版本实现Exactly Once的原理:
Kafka 的幂等性实现其实就是将原来下游需要做的去重放在了数据上游。开启幂等性的 Producer 在初始化的时候会被分配一个 PID,发往同一 Partition 的消息会附带 Sequence Number。而 Broker 端会对做缓存,当具有相同主键的消息提交时,Broker 只会持久化一条。
新版本实现Exactly Once的缺点:
但是分配的 PID 重启就会变化,同时不同的 Partition 也具有不同主键,所以幂等性无法保证跨分区跨会话的 Exactly Once。