书生·浦语大模型实战营第二期
文章平均质量分 74
Momosaki
这个作者很懒,什么都没留下…
展开
-
【书生·浦语大模型实战营】第7节:OpenCompass 大模型评测实战(笔记及作业)
针对具有确定性答案的能力维度和场景,通过构造丰富完善的评测集,对模型能力进行综合评价。针对体现模型能力的开放式或半开放式的问题、模型安全问题等,采用主客观相结合的评测方式。文档:https://github.com/InternLM/Tutorial/blob/camp2/opencompass/readme.md。客观评测用定量指标比较模型的输出与标准答案以进行评测,主管评测则是用高性能的大模型模拟人类进行主观打分。实现对internlm2-chat-1_8b模型在C-Eval数据集上的性能评测。原创 2024-05-12 17:18:52 · 532 阅读 · 0 评论 -
【书生·浦语大模型实战营】第6节:Lagent & AgentLego 智能体应用搭建(笔记及作业)
三种常见的智能体范式Lagent和AgentLego介绍server启动# 比如 export WEATHER_API_KEY=1234567890abcdef。原创 2024-05-12 15:37:23 · 452 阅读 · 0 评论 -
【书生·浦语大模型实战营】第5节:LMDeploy量化部署实践(笔记及作业)
个人感觉LMDeploy和XTuner都是非常实用的工具,不过LMDeploy更偏向应用层面。大模型部署大多都是把训练好的模型部署到本地或者服务器上,但是大模型部署一般对资源要求比较高。pipeline.py内容修改kv cache内存占比,并把模型改为w4a16量化后的模型。显然,internlm2-chat-1_8b也回答不上来是更喜欢爸爸还是更喜欢妈妈。主要介绍了大模型的部署背景、大模型部署方法,并且简单介绍了LMDeploy。很显然internlm2-chat-1_8b-4bit也不太喜欢读研。原创 2024-05-12 14:48:23 · 583 阅读 · 0 评论 -
【书生·浦语大模型实战营】第4节:XTuner(笔记及作业)
xtuner确实方便,几条指令就能直接开始训练了,而且支持使用自己的数据集,比我之前自己做qlora微调方便了非常多,而且config文件也写得很清楚明了,不用花很多时间去理解,一看就懂,还是很方便的。xtuner支持在终端直接与Huggingface格式的模型进行对话,可以测试整合后的模型的性能,真的好方便……将 /root/ft/web_demo/InternLM/chat/web_demo.py中的内容替换为以下的代码。指令获取xtuner支持的模型及对应的微调方式。指令可获得指定模型的配置文件名。原创 2024-05-12 11:05:13 · 459 阅读 · 0 评论 -
【作业】【书生·浦语大模型实战营】第3节
⚠️ 重要事项: 如果不用 https 安全链接,需要。否则知识库登录会异常。运行算法pipeline。原创 2024-05-08 15:58:50 · 476 阅读 · 0 评论 -
【书生·浦语大模型实战营】第3节:茴香豆:搭建你的 RAG 智能助理(笔记及作业)
在终端运行以下命令,实现从官方环境复制运行InternLM的基础环境,并命名为InternLM2_Huixiangdou。⚠️ 重要事项: 如果不用 https 安全链接,需要。的相关模块,默认嵌入和重排序模型调用的网易。否则知识库登录会异常。数据库向量化的过程应用到了。运行算法pipeline。原创 2024-05-08 15:54:34 · 467 阅读 · 0 评论 -
【作业】【书生·浦语大模型实战营】第2节
【代码】【作业】【书生·浦语大模型实战营】第2节。原创 2024-04-08 09:40:57 · 278 阅读 · 0 评论 -
【书生·浦语大模型实战营】第2节:轻松玩转书生·浦语趣味Demo
完成后修改lagent下example/internlm2_agent_web_demo_huf.py文件,修改后如下所示。若使用Huggingface_hub下载相关文件,可使用huggingface_hub包。进入所创建的文件夹,在download_mini.py文件中输入以下内容并保存。若使用书生·浦语的开发机,则可使用share文件夹中的模型资源。在cli_demo.py中输入以下内容并保存。完成后在终端执行命令以下载模型参数文件。执行Demo,并等待模型加载完成。下载完成后执行以下命令下载程序。原创 2024-04-02 10:49:19 · 785 阅读 · 0 评论 -
【书生·浦语大模型实战营】第1节:书生·浦语大模型全链路开源开放体系
并重新配置矩阵布局,对每个头部的k、q、v矩阵采用交错的方法以便于张良并行大小的调整,可以沿着矩阵的最后一个维度拆分或链接矩阵,从而增强模型在不同分布式计算环境中的灵活性。背景:大模型已经成为发展通用人工智能的重要途径,从21世纪初到2021年,相关研究集中于针对特定任务的专用模型,近年来相关研究更多倾向于通用大模型,即一个模型应对多种任务和模态,如ChatGPT等。总结了InternLM2的主要贡献,包括模型的开源、在长文本性能方面的设计、数据准备指导以及创新的RLHF训练技术。全方位评测,性能可复现。原创 2024-03-28 15:08:29 · 719 阅读 · 0 评论