深度学习
文章平均质量分 83
落叶无声9
没有不成功的事,唯有坚持。
展开
-
wav2letter++简介:Facebook深度学习语音识别系统
语音识别系统是深度学习生态中发展最成熟的领域之一。当前这一代的语音识别模型基本都是基于递归神经网络(Recurrent Neural Network)对声学和语言模型进行建模,以及用于知识构建的计算密集的特征提取流水线。虽然基于RNN的技术已经在语音识别任务中得到验证,但训练RNN网络所需要的大量数据和计算能力已经超出了大多数机构的能力范围。最近,Facebook的AI研究中心(FAIR)发表的一...原创 2018-12-27 08:11:20 · 732 阅读 · 0 评论 -
slowfast解读:facebook用于机器视觉分析视频理解的双模CNNk
检测并归类图像中的物体是最广为人知的一个计算机视觉任务,随着ImageNet数据集挑战而更加流行。不过还有一个令人恼火的问题有待解决:视频理解。视频理解指的是对视频片段进行分析并进行解读。虽然有一些最新的进展,现代算法还远远达不到人类的理解层次。 Facebook的AI研究团队新发表的一篇论文,SlowFast,提出了一种新颖的方法来分析视频片段的内容,可以在两个应用最广的视频理解基准测试中获得了...原创 2018-12-28 10:11:31 · 519 阅读 · 0 评论 -
facebook NLP 自然语言处理框架 Pytext 简介
自然语言处理(NLP)在现代深度学习生态中越来越常见。从流行的深度学习框架到云端API的支持,例如Google云、Azure、AWS或Bluemix,NLP是深度学习平台不可或缺的部分。尽管已经取得了令人难以置信的进步,但构建大规模的NLP应用依然还有极大的挑战,在学习研究和生产部署之间还存在很多摩擦。作为当前市场上最大的会话环境之一,Facebook已经面对构建大规模NLP应用的挑战有一些年头了...原创 2018-12-26 09:20:52 · 481 阅读 · 0 评论 -
用Flair(PyTorch构建的NLP开发包)进行文本分类
Flair是一个基于PyTorch构建的NLP开发包,它在解决命名实体识别(NER)、语句标注(POS)、文本分类等NLP问题时达到了当前的顶尖水准。本文将介绍如何使用Flair构建定制的文本分类器。 简介 文本分类是一种用来将语句或文档归入一个或多个分类的有监督机器学习方法,被广泛应用于垃圾邮件过滤、情感分析、新文章归类等众多业务领域。 当前绝大多数领先的文本分类方法都依赖于文本嵌入技术,它将文...原创 2018-12-26 09:22:48 · 951 阅读 · 0 评论