Yolov系列之各个版本区别

本文详细介绍了Yolo系列目标检测算法,从基本思路开始,包括输入图片处理、网格划分、特征提取、非极大值抑制等步骤。Yolov2通过引入batch normalization和k-means设定先验框,提升了检测效果。Yolov3通过多尺度特征融合,增强了对不同大小物体的检测能力。而Yolov4则进一步增加了数据多样性,并采用dropblock和标签平滑等技术优化算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

思路

论文参考:You only look once unified real-time object detection

在这里插入图片描述

  • 输入图片 resize 4484483
  • 将图片分成7*7 的网格
  • 经过Googlenet 提取图片特征
  • 经过全联接层
  • 最后输出7730(每个网格预测5520个类别的概率)
  • 进行非极大值抑制

细节

confidences 计算

c=Pr(Object)∗IOU pred-truth
​Pr(Object)表示当前格子包含目标的概率,如果检测到另一个物体的confidences 很大, 则另一个设置为0, 所以只能检测出一个物体。

  • 非极大值抑制

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东哥aigc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值