Description
在图论中,拓扑序(Topological Sorting)是一个有向无环图(DAG, Directed Acyclic Graph)的所有顶点的线性序列. 且该序列必须满足下面两个条件:
1.
每个顶点出现且只出现一次.
2.
若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面.
对于一个含有n个节点的有向无环图(节点编号0到n-1),输出它的一个拓扑序.
图的节点数和边数均不多于100000,保证输入的图是一个无环图.
请为下面的Solution类实现解决上述问题的topologicalSort函数,函数参数中n为图的节点数,edges是边集,edges[i]表示第i条边从edges[i].first指向edges[i].second. 函数返回值为有向图的一个拓扑序. 有向图有多个拓扑序时,输出任意一个即可.
class Solution {
public:
vector<int> topologicalSort(int n, vector<pair<int, int>>& edges) {
}
};
例1:
n = 3,edges = {(0, 1), (0, 2)},函数应返回{0, 1, 2}或者{0, 2, 1}.
例2:
n = 4,edges = {(0, 1), (0, 2), (1, 2), (3, 0)},函数应返回{3, 0, 1, 2}.
解:
vector<bool> noInDegree(n, true); 代表结点的入度是否为0,如果结点入度为0,结点可以排在任何其他结点前面
vector<int> inDegree(n, 0); 代表结点入度值,如果值为2,则意味着必须有2个结点排在此结点前面,每当一个前序结点加到了ans中(相当于删去了边),此值可以减1,减到0时可以加到ans中
有了以上2个vector和拓扑关系,遍历
noInDegree==true的结点,直接加到ans中,然后对此结点DFS,这里我用的stack实现的
代码:
class Solution {
public:
vector<int> topologicalSort(int n, vector<pair<int, int> >& edges) {
vector<bool> noInDegree(n, true);
vector<vector<int> > tuopu(n);
vector<int> inDegree(n, 0);
vector<int> ans;
int es = edges.size();
for (int i = 0; i < es; i++) {
noInDegree[edges[i].second] = false;
tuopu[edges[i].first].push_back(edges[i].second);
inDegree[edges[i].second]++;
}
for (int i = 0; i < n; i++) {
if (noInDegree[i] == true) {
ans.push_back(i);
stack<int> s;
s.push(i);
while (!s.empty()) {
int out = s.top();
s.pop();
for (int j = 0; j < tuopu[out].size(); j++) {
if (inDegree[tuopu[out][j]] != 0) {
inDegree[tuopu[out][j]]--;
if (inDegree[tuopu[out][j]] == 0) {
ans.push_back(tuopu[out][j]);
s.push(tuopu[out][j]);
}
}
}
}
}
}
return ans;
}
};