Sicily 1004. 拓扑序[Special judge]

Description

在图论中,拓扑序(Topological Sorting)是一个有向无环图(DAG, Directed Acyclic Graph)的所有顶点的线性序列. 且该序列必须满足下面两个条件:

 
1.        每个顶点出现且只出现一次.
2.        若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面.
 
对于一个含有n个节点的有向无环图(节点编号0到n-1),输出它的一个拓扑序.
 
图的节点数和边数均不多于100000,保证输入的图是一个无环图.
 
请为下面的Solution类实现解决上述问题的topologicalSort函数,函数参数中n为图的节点数,edges是边集,edges[i]表示第i条边从edges[i].first指向edges[i].second. 函数返回值为有向图的一个拓扑序. 有向图有多个拓扑序时,输出任意一个即可.
 
class Solution {
public:
       vector<int> topologicalSort(int n, vector<pair<int, int>>& edges) {
          
    }
};
 
例1:
n = 3,edges = {(0, 1), (0, 2)},函数应返回{0, 1, 2}或者{0, 2, 1}.
 
例2:
n = 4,edges = {(0, 1), (0, 2), (1, 2), (3, 0)},函数应返回{3, 0, 1, 2}.


解:
vector<bool> noInDegree(n, true); 代表结点的入度是否为0,如果结点入度为0,结点可以排在任何其他结点前面
vector<int> inDegree(n, 0); 代表结点入度值,如果值为2,则意味着必须有2个结点排在此结点前面,每当一个前序结点加到了ans中(相当于删去了边),此值可以减1,减到0时可以加到ans中
有了以上2个vector和拓扑关系,遍历 noInDegree==true的结点,直接加到ans中,然后对此结点DFS,这里我用的stack实现的
代码:
class Solution {
	public:
       	vector<int> topologicalSort(int n, vector<pair<int, int> >& edges) {
       		vector<bool> noInDegree(n, true);
	       	vector<vector<int> > tuopu(n);
	       	vector<int> inDegree(n, 0);
	       	vector<int> ans;
       		int es = edges.size();
       		for (int i = 0; i < es; i++) {
       			noInDegree[edges[i].second] = false;
       			tuopu[edges[i].first].push_back(edges[i].second);
       			inDegree[edges[i].second]++;
       		}
          	for (int i = 0; i < n; i++) {
          		if (noInDegree[i] == true) {
          			ans.push_back(i);
          			stack<int> s;
          			s.push(i);
          			while (!s.empty()) {
          				int out = s.top();
          				s.pop();
          				for (int j = 0; j < tuopu[out].size(); j++) {
							if (inDegree[tuopu[out][j]] != 0) {
								inDegree[tuopu[out][j]]--;
								if (inDegree[tuopu[out][j]] == 0) {
									ans.push_back(tuopu[out][j]);
									s.push(tuopu[out][j]);
								}
								
							}
						}
          			}
          		}
          	}
          	return ans;
    	}
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值