Spark task过多导致任务运行过慢甚至超时

背景以及现象

本文基于 spark 3.1.2
设置spark.driver.memory=2g
在调试spark sql任务的时候,发现有几个任务产生了40多万个Task,而且任务长期运行不出来。

分析

运行此sql,可以得到如下的dag(我们只截取产生Task多的Stage),由此可以看到是scan的文件太大了(scan了日志文件半年的数据)。
在这里插入图片描述

但是为什么这种情况下会导致任务运行很缓慢甚至会超时呢?
找到driver端,
用jstat -gcutil查看一下对应的gc情况(对应的内存都是调优完后的镜像信息),如下:

  S0     S1     E      O      M     CCS    YGC     YGCT    FGC    FGCT     GCT
 62.02   0.00   9.96  64.72  91.02  94.29    916   13.091    26    0.650   13.742
  0.00  77.27   6.58  64.72  91.02  94.29    917   13.100    26    0.650   13.750
  0.00  77.27  76.70  64.72  91.02  94.29    917   13.100    26    0.650   13.750
  0.00  22.28  45.52  65.65  91.02  94.29    921   13.143    26    0.650   13.794
  0.00  43.36  70.04  65.65  91.02  94.29    923   13.157    26    0.650   13.807
 63.00   0.00  71.39  65.65  91.02  94.29    924   13.165    26    0.650   13.815
  0.00  87.35  42.71  65.65  91.02  94.29    925   13.173    26    0.650   13.823
 21.96   0.00   0.00  66.59  91.02  94.29    930   13.220    26    0.650   13.871
 62.19   0.00   7.41  66.59  91.02  94.29    932   13.235    26    0.650   13.886
 62.19   0.00  65.55  66.59  91.02  94.29    932   13.235    26    0.650   13.886

直接用jmap -heap 命令查看一下对应的堆情况:

Heap Configuration:
   MinHeapFreeRatio         = 40
   MaxHeapFreeRatio         = 70
   MaxHeapSize              = 4294967296 (4096.0MB)
   NewSize                  = 172621824 (164.625MB)
   MaxNewSize               = 523436032 (499.1875MB)
   OldSize                  = 345374720 (329.375MB)
   NewRatio                 = 2
   SurvivorRatio            = 8
   MetaspaceSize            = 21807104 (20.796875MB)
   CompressedClassSpaceSize = 1073741824 (1024.0MB)
   MaxMetaspaceSize         = 17592186044415 MB
   G1HeapRegionSize         = 0 (0.0MB)

Heap Usage:
New Generation (Eden + 1 Survivor Space):
   capacity = 155385856 (148.1875MB)
   used     = 115967072 (110.59481811523438MB)
   free     = 39418784 (37.592681884765625MB)
   74.63167818826444% used
Eden Space:
   capacity = 138149888 (131.75MB)
   used     = 100616000 (95.95489501953125MB)
   free     = 37533888 (35.79510498046875MB)
   72.83103986302181% used
From Space:
   capacity = 17235968 (16.4375MB)
   used     = 15351072 (14.639923095703125MB)
   free     = 1884896 (1.797576904296875MB)
   89.06417092442966% used
To Space:
   capacity = 17235968 (16.4375MB)
   used     = 0 (0.0MB)
   free     = 17235968 (16.4375MB)
   0.0% used
concurrent mark-sweep generation:
   capacity = 3127533568 (2982.6484375MB)
   used     = 2325934584 (2218.1840744018555MB)
   free     = 801598984 (764.4643630981445MB)
   74.36961213776492% used

可以看到driver端的内存 full gc频次有点高,而且内存增长的很厉害。

再次 我们用jmap -dump:format=b,file=heapdump.hprof命令dump内存的堆信息,我们分析一下,用MAT打开,我们可以看到如下的信息:
在这里插入图片描述
在这里插入图片描述
可以看到 taskSetManager的内就占用了700M。而且这任务才只是开始运行,所以后续很长一段时间,必然会占比较长的时间段。
而且这只是一个taskSetManager的内存占用,如果在足够复杂的sql下,有可能会有类似的taskSetManaget会有多个(taskSetManager是一个stage所有task的总和)。

结论以及解决方法

所以在这种情况下,如果业务上改变不了,我们就得增加内存,在笔者的情况下,增加driver内存到4g就能很好的解决,且运行的速度很快。

spark.driver.memory=4g
<think>我们正在处理一个关于任务调用超时的问题,具体错误信息是:Invokingtasktimedoutafter3seconds,errorCode为-1,statusCode为433。根据引用[1]和引用[2],我们可以推测这是一个任务执行超时的问题。引用[1]直接提到了相同的错误信息,引用[2]则提供了Spark任务超时的一些配置调整方法,虽然环境不同(一个是SparkonYARN),但思路类似:调整超时时间。解决方案思路:1.延长任务调用的超时时间。错误信息显示任务在3秒后超时,因此我们可以尝试增加超时时间。2.检查任务本身是否因为资源不足(如CPU、内存)而执行缓慢,导致超时。3.优化任务代码,减少执行时间。由于引用[2]提到了调整超时配置的方法,我们可以参考其思路,但需要根据具体的系统环境进行调整。具体步骤:步骤1:调整超时配置根据错误信息,任务调用超时时间只有3秒,这通常太短。我们可以尝试将其增加到30秒或更长,具体根据任务正常执行所需时间而定。例如,在相关配置中寻找类似`task.timeout`、`invocation.timeout`等配置项,将其设置为更大的值。步骤2:检查系统资源如果任务执行需要较多资源,而当前资源不足,可能导致执行缓慢。检查系统监控(如CPU、内存使用情况),确保资源充足。步骤3:优化任务如果任务本身执行时间过长,考虑优化任务逻辑,比如减少处理的数据量、优化算法等。步骤4:查看日志查看详细的错误日志,确定超时的具体原因。可能除了超时时间设置过短外,还有其他的根本原因。由于引用[1]和引用[2]都指向超时问题,我们优先考虑调整超时配置。注意:引用[2]中给出了Spark的一些配置参数,但我们的错误信息并没有明确是Spark环境。因此,需要根据实际运行环境来调整配置。如果运行环境是自定义的任务调度系统,那么可能需要调整该系统的任务调用超时参数。如果环境是SpringCloudTask或其他分布式任务框架,可以尝试以下配置(以SpringCloudTask为例):```properties#设置任务执行超时时间(单位毫秒)spring.cloud.task.execution.timeout=30000```或者,如果是通过API调用任务,可能在调用时设置超时时间,例如:```java//假设使用RestTemplate,设置超时时间RestTemplaterestTemplate=newRestTemplate();restTemplate.setRequestFactory(newHttpComponentsClientHttpRequestFactory());((HttpComponentsClientHttpRequestFactory)restTemplate.getRequestFactory()).setConnectTimeout(30000);((HttpComponentsClientHttpRequestFactory)restTemplate.getRequestFactory()).setReadTimeout(30000);```由于具体环境未知,以上仅为示例。总结:根据错误信息,最直接的解决方案是增加任务调用的超时时间。相关问题:1.如何确定任务执行所需的时间?2.除了增加超时时间,还有哪些方法可以避免任务调用超时?3.如何监控任务执行过程中的资源使用情况?</think>### 任务调用超时错误解决方案(errorCode -1, statusCode 433) 根据您遇到的错误信息 `Invoking task timed out after 3 seconds`(任务调用超时)结合引用[1][2],以下是系统性的解决方案: #### 核心解决步骤 1. **延长超时时间配置** - 错误直接表明任务在3秒内未完成 - 修改配置示例(根据系统类型调整): ```yaml # 通用超时设置(单位:毫秒) task.timeout: 30000 # 从3秒→30秒 invocation.max_wait: 60000 ``` - Spark环境参考引用[2]: ```bash --conf spark.yarn.am.waitTime=6000s --conf spark.network.timeout=600s ``` 2. **优化任务性能** - 检查任务是否存在以下问题: - 资源死锁(如数据库连接未释放) - 大对象未序列化(消耗网络带宽) - 复杂计算未分片(单任务负载过重) - 使用性能分析工具(如JProfiler)定位瓶颈 3. **调整系统资源** - 增加任务分配资源: ```bash # 示例:YARN环境 --executor-memory 8g --num-executors 4 ``` - 监控资源使用(CPU/MEM/IO),确保无资源争用 4. **检查依赖服务** - 验证任务依赖的上下游服务: - 数据库响应时间(慢查询) - 远程API调用延迟 - 分布式锁等待时间 #### 根本原因分析 | 错误代码 | 可能原因 | 验证方法 | |----------------|-----------------------------------|------------------------------| | errorCode -1 | 系统级未捕获异常 | 查看堆栈日志 | | statusCode 433 | 服务端拒绝处理(常见于过载/超时) | 监控服务器负载和队列深度 | #### 预防措施 - **添加重试机制**: ```java // 伪代码示例 for (int i = 0; i < MAX_RETRY; i++) { try { executeTask(); break; } catch (TimeoutException e) { Thread.sleep(backoffTime); } } ``` - **设置超时熔断**:使用Resilience4j等工具实现自动降级 - **日志增强**:在任务关键节点添加耗时日志标记 > **关键提示**:引用[2]中Spark超时配置经验表明,网络密集型任务至少需要600秒级超时设置[^2]。若问题持续,建议捕获线程Dump分析阻塞点(使用jstack或arthas)[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值