- 博客(15)
- 收藏
- 关注
原创 区块链研究
文章目录资金追溯异常检测2018-Detecting Ponzi Schemes on Ethereum: Towards Healthier Blockchain Technology简介内容结论文章提到的其他信息2020-Who Are the Phishers? Phishing Scam Detection on Ethereum via Network Embedding简介内容总结2020-Modeling and Understanding Ethereum Transaction Recor
2021-04-25 10:48:40
757
1
原创 序列数据的利器——RNN及变体LSTM(tensorflow2.x实现写诗机实例)
文章目录具有序列特征的数据序列任务为什么需要RNNRNN结构LSTMLSTM结构使用LSTM实现一个写诗机数据集数据预处理从txt中读出数据为词嵌入做准备模型设计设计思路模型搭建——前向计算词嵌入LSTM层Output模型搭建——反向传播损失函数训练诗词生成测试模型具有序列特征的数据文本是一种典型的序列数据,在计算机中往往以字符串的形式体现。想象一下我们阅读文字的步骤:一般是从左到右,过程中不断根据新的读入信息,修改自己的理解。例如有人说:“我今天买了苹果,可好吃了”。我们看到前半句“我今天买了苹果”,
2021-03-06 15:46:08
809
原创 神经网络的基础——感知机
文章目录从问题入手分类和回归如何根据坐标分布判断二维数据点的类别感知机——神经网络的雏形前向:利用超平面表示样本的类别损失函数:衡量分类的误差观察分类效果将误分类点到平面的距离作为分类损失反向传播:根据损失,不断调整超平面对未知数据进行分类从单感知机到神经网络更复杂的数据神经网络的基本构成封装我们的感知机(试着完成)从问题入手分类和回归分类问题分类问题在日常生活中非常普遍,我们人脑每天要处理成千上万次的分类问题。例如,我们根据记忆中的面貌特征来辨别同学。可以这样理解分类:给定一个未知类别的样本和历
2021-03-06 14:56:11
389
原创 《Python元学习》通过梯度下降来学习如何通过梯度下降来学习
文章目录@[toc]元学习的目的不同类型的元学习通过梯度下降来学习如何通过梯度下降来学习以RNN代替原网络的优化器网络的一般优化过程RNN如何学习优化器行为如何定义LSTM优化器自身的参数元学习的目的模拟人类自主学习的过程,学习“如何去学习”,传统神经网络是“为任务目标而学习”。不同类型的元学习学习如何利用数据的相似性帮助学习——学习度量空间充分利用相关数据,更适合于少样本的学习环境学习初始化——学习如何初始化原网络的参数试图使原网络更快收敛学习优化器——学习如何优化原网络
2020-07-23 16:47:26
441
原创 tensorflow高维度张量相乘
高维度张量相乘通过tf.reshape()对高维度张量降维,验证高维度张量相乘结果通过tf.reshape()对高维度张量降维,验证高维度张量相乘结果最近遇到了需要将高于2维度的张量相乘的需求,通过互联网资源查到了先用tf.reshape()降到2维再运算的骚操作。下面验证这种操作的可靠性。#测试多维矩阵乘法。问题来自于mul-attention模型的矩阵运算#2019-7-14编辑im...
2019-07-14 13:30:19
5785
原创 为tornado服务器配置阿里云ssl证书
因学校某app项目需要,近期为服务器安装了ssl证书,协议由http转为https准备:1.一个域名2.服务器(公网ip)证书申请域名需要指向服务器地址,如果不出问题,这个过程很快。前往阿里云产品中心,选择ssl证书,点击立即购买。购买完成后前往控制台,选择证书,点击申请签名。前往DNS解析控制台,在域名管理中找到记录,并点击启用在ssl证书控制台中找到证书,证书状态会变...
2019-02-19 16:25:01
797
3
原创 tensorflow踩坑记录
为了下学期的实验做准备,我在寒假学习了tensorflow,边学边搭建网络进行训练。在学习的路上踩了不少坑,但是总体还算顺利。这些坑中,除了网络本身的bug和tf语法错误,还有几个特别要注意的异常。ResourceExhaustedError这个异常表示资源耗尽,通常指在为参数变量申请内存(显存)时,剩余可用空间不足。解决办法主要有三条思路使用CPU训练减少网络的参数变量减小batch...
2019-02-10 14:06:09
458
原创 机器学习之回归——加入高斯核的局部加权回归
在标准回归中,所有样本的回归系数都是相同的。所以我们得到的是一个直线。例如下图 我们发现,总是有一簇数据在直线上方或者在直线下方。如果我们能拟合一条“曲线”,预测的效果会更好。 有个方法可以让这个想法成为现实。如果我们使用多个回归系数,就可以模拟出一条曲线来。如下图 这条线之所以变曲了,是因为每个样本拟合出的回归系数都不一样,这条线在每个小段内的斜率也就不一样。 具体做法: 给待...
2018-04-30 17:09:42
2070
原创 机器学习之回归——标准最小二乘法回归的数学推导过程(矩阵形式)
均方误差函数:f(w)=∑i=1m(yi−xTiw)2f(w)=∑i=1m(yi−xiTw)2f(w) = { \sum_{i=1}^m {(y_i - x_i^Tw)^2} } f(w)分别对w1,w2,...wdw1,w2,...wdw_1, w_2, ...w_d求偏导 ∂f(w)∂w1=2(y1−xT1⋅w)⋅x11+2(y2−xT2⋅w)⋅x12+⋯+2(ym−xTm⋅w)⋅x1m∂...
2018-04-29 18:20:32
2179
2
原创 基于朴素贝叶斯的中文文本分类器(python实现,非调用)
本文将用朴素贝叶斯原理做一个中文文本分类器。朴素贝叶斯完全可以胜任多分类任务。为了方便,这里就先做个2分类的。理论部分:https://blog.csdn.net/montecarlostyle/article/details/79870860 我们事先准备两类中文邮件,一类是有些报刊编辑发的征稿广告,另一类是一些支付信息(正常通信的邮件太少了,不好找)。 我们的目的 有了理论准备之后,我们...
2018-04-12 15:00:16
6462
4
原创 web数据挖掘学习笔记-朴素贝叶斯分类(理论部分)
参考: 《统计学习方法》 李航 著 清华大学出版社 《机器学习》周志华 著 清华大学出版社-概率论准备贝叶斯法则,乘法公式 P(A∩B)=P(B|A)∗P(A)=P(A|B)∗P(B)P(A∩B)=P(B|A)∗P(A)=P(A|B)∗P(B)P(A \cap B) = P(B | A) * P(A) = P(A | B) * P(B) 条件独立 设事件A与事件B相互...
2018-04-09 18:49:14
840
原创 web数据挖掘学习笔记-Apriori(一)-python及c++实现
理论准备关联规则的基本概念 (1)关联规则介绍 关联规则(Association Rule)是数据中所蕴含的一类重要规律,对关联规则进行挖掘是数据挖掘中的一项根本性任务,甚至可以说是数据库和数据挖掘领域中所发明并被广泛研究的最为重要的模型。关联规则挖掘的目标是在数据项目中找出所有的并发关系,这种关系也称为关联。它的最经典的应用是购物篮。目的是找出顾客在商场所选购商品...
2018-04-08 11:59:31
1058
原创 web数据挖掘学习笔记-Apriori(二)MS-Apriori-python实现
上一部分,我们讨论了apriori是如何减少子项集频繁度搜寻的。并且介绍了规则生成过程。 传送:https://blog.csdn.net/montecarlostyle/article/details/79850029新问题提出在类似商品关联挖掘的应用中,可能会遇到一个问题:那些具有较低支持度但是价值较高(高利润)的项目集不会生成。由于它们的支持度太低,在普通apriori算法迭代...
2018-04-07 20:06:42
968
2
原创 机器学习学习笔记——logistic回归(数学推导及python实现)
Logistic回归是一种二分类算法。我们设定输出标记:一类为0,一类为1。则输出标签y可以表示为:其样本x的属性数据可以表示为下图。其中i表示第i个样本,i <= m,上标d表示为每个样本有d个属性。这里x表示成行向量。普通的线性回归得到的是数值。它是用求出一个由d个权值组成的列向量w,使得 x * w + b尽可能得靠近真实值,b是偏移量,是个未知常数。为了方便表示,我们扩展x和w。这样...
2018-04-04 19:23:03
669
原创 算法设计与分析学习笔记——最长公共子序列
最长公共子问题待解决问题: 给定两个序列X和Y,求其一个最长公共的序列Z。 补充解释:X(m)={x1, x2,,,,,xm},Y(n)={y1, y2,,,,,yn},X和Y可以有共同的元素,Z是这些共同元素的集合,其元素顺序在XYZ中都是升序排序的(Z中元素的顺序不能在X,Y中出现前后颠倒的情况)。 例子:X={A, B, C, B, D, A, B},Y={B, D, C,...
2018-04-04 16:35:50
2627
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人