moon
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
78、伪随机编码相关理论研究
本文围绕伪随机编码展开深入研究,探讨了计算熵中的HILL熵与Yao熵概念及其在伪随机编码中的应用限制,特别是在二次剩余假设下的差异。文章定义了伪随机编码假设(PREHrand≈c)和可逆采样假设(ISHrand≈c),并证明二者等价。进一步地,研究了引入公共参考字符串后的静态与自适应伪随机编码变体之间的关系,通过混合游戏论证实现了从静态到自适应的安全性转换。这些理论成果为密码学中的安全编码与采样机制提供了重要基础。原创 2025-10-08 10:19:33 · 33 阅读 · 0 评论 -
77、伪随机编码的研究进展与技术剖析
本文系统探讨了伪随机编码的研究进展与技术挑战,分析了不同变体(如确定性统计、确定性计算和随机统计伪随机编码)的可行性,并在标准密码学假设下得出了多个否定结果。文章揭示了伪随机编码与可逆采样的等价关系,提出了从静态到自适应的转换方法,并讨论了其在CRS模型中的应用。此外,还展望了未来研究方向,包括cPREH_{rand}^{≈c}与iO的关系、基于该假设构造公钥加密的可能性以及放宽现有难解性假设的潜力,为密码学理论的发展提供了重要思路。原创 2025-10-07 16:34:10 · 25 阅读 · 0 评论 -
76、伪随机编码的深入探索与应用
本文深入探讨了伪随机编码(PRE)在密码学中的理论基础与广泛应用。通过分析不同类型的PRE——包括随机化与确定性、计算与统计不可区分性,以及在CRS模型下的静态与自适应变体,揭示了PRE与可逆采样之间的等价关系,并展示了其在自适应MPC、隐写术、隐蔽MPC和蜜罐加密中的关键作用。研究还实现了从静态到自适应安全的转换,降低了对次指数iO的依赖,推动了多项密码学协议的可行性与安全性提升。原创 2025-10-06 09:10:51 · 34 阅读 · 0 评论 -
75、单向函数下TFNP平均情况硬度及伪随机编码研究
本文探讨了在单向函数假设下TFNP问题的平均情况硬度扩展,包括对非自适应和随机化安全归约的分析,并引入了伪随机编码的概念及其在密码学中的应用。文章详细阐述了伪随机编码的定义、特性及其与压缩、加密的区别,提出了伪随机编码假设(PREH),即所有高效可采样的分布都允许伪随机编码,并讨论了其理论意义与实际挑战。研究显示,该领域与密码学多个方向紧密相关,具有重要的研究价值和发展前景。原创 2025-10-05 14:12:36 · 20 阅读 · 0 评论 -
74、从单向函数看TFNP中的平均情况硬度
本文探讨了从单射单向函数构造TFNP中困难问题的全黑盒方法,重点分析了确定性f-无感知多对一归约的不可能性。通过设计编码与解码算法,并结合前缀自由码的信息论下界,证明了在特定条件下此类构造会导致矛盾,从而揭示了单向函数与TFNP之间关系的深层复杂性。研究还扩展至随机化非自适应归约,并讨论了其在密码学和算法设计中的理论意义与实际启示。原创 2025-10-04 16:55:00 · 24 阅读 · 0 评论 -
73、单向函数在TFNP中平均情况硬度的研究
本文研究了在弱通用密码学假设下,特别是基于单射单向函数的存在性,能否全黑盒构造TFNP中平均情况困难的总搜索问题。通过引入黑盒分离框架、分析‘无用’解的存在性,并设计依赖于归约算法的特定Solve预言机,结合压缩论证技术,论文证明了不存在通过随机化f - 无关非自适应归约从单射单向函数高效构造最坏情况困难TFNP问题的全黑盒方法。该结果为TFNP与单向函数之间的完全黑盒分离提供了重要进展。原创 2025-10-03 16:13:12 · 28 阅读 · 0 评论 -
72、非可塑码、提取器与秘密共享相关研究
本文探讨了非可塑码、提取器与秘密共享之间的关系及其在密码学中的应用,提出了基于建议生成器和建议关联破坏器的非可塑提取器构造方法,并分析了其技术细节与实际应用场景。同时研究了TFNP复杂度类与单向函数(OWFs)之间的关系,利用黑盒分离框架和重建范式给出了首个否定性结果,表明无法通过简单的黑盒归约从OWFs构建平均情况困难的TFNP问题。文章还展望了未来在函数组合非可塑码构造、无种子提取器优化及TFNP与密码学原语关系深化等方面的研究方向。原创 2025-10-02 09:13:14 · 22 阅读 · 0 评论 -
71、不可延展码、提取器与秘密共享技术解析
本文深入解析了不可延展码、提取器与秘密共享技术的核心理论与构造方法。重点介绍了改进的非延展提取器设计,包括线性种子提取器的应用、伪随机采样策略以及对偶BCH码的优化作用。提出了针对交错源的有效提取方案,通过构建某处随机源并利用建议相关打破器消除相关性,实现高熵输出。文章还系统阐述了条件最小熵、种子提取器、采样器等基础概念,并结合多个关键定理分析了各类提取器的性质与联系。最后探讨了这些技术在信息安全、密码学和分布式系统中的应用前景,总结了其相较于传统方法的优势,并指出了未来研究方向。原创 2025-10-01 10:22:52 · 29 阅读 · 0 评论 -
70、无种子抗篡改提取器与交错源提取器的构造与应用
本文研究了无种子抗篡改提取器与交错源提取器的构造及其应用。针对传统随机源质量不高的问题,提出了对特定篡改函数类如Lin∘(2,n^β)-ISS的首个显式无种子抗篡改提取器,并构造了适用于最小熵至少为(2/3+δ)n的2-交错源的显式提取器,输出长度达Ω(n),误差指数级小。通过建议生成与相关性破坏技术,实现了高效提取,并探讨了其在随机数生成、密码学和通信复杂度中的应用。此外,文章还展示了如何从抗篡改提取器构建高效的抗篡改码,为后续理论与实践提供了新方向。原创 2025-09-30 16:58:02 · 19 阅读 · 0 评论 -
69、交错篡改和篡改组合的非延展码、提取器与秘密共享
本文研究了非延展码在新型篡改函数下的显式构造,提出了针对交错2-拆分状态篡改和仿射篡改与联合篡改组合的非延展码方案。这些构造实现了恒定误差下的有效编码,并应用于密码学中的二进制份额非延展秘密共享方案,解决了现有方案中份额大小过大的局限性。文章还展示了从非延展码到秘密共享的转换方法,并分析了其安全性和应用前景,为未来高效抗篡改编码与鲁棒秘密共享的设计提供了理论基础和技术路径。原创 2025-09-29 11:13:53 · 36 阅读 · 0 评论 -
68、客户端设置下副本编码的新技术
本文介绍了一种客户端设置下的副本编码新技术,基于陷门置换、可刺破伪随机函数(PPRF)和不可区分混淆(iO)构建了新的编码方案。详细描述了编码的构造过程rSetup、rEnc和rDec,并证明其在随机函数模型下的s-可靠性。进一步提出一种基于iO的新陷门置换构造,展示了其效率、正确性和安全性。同时,针对轮数r ∈ o(b·n)的情形,构造了有效的攻击对手(A1, A2),证明该参数下方案无法满足s-可靠性,揭示了轮函数轮数的最优性边界。最后总结了技术要点并提出了实际应用中的轮数选择建议与未来研究方向。原创 2025-09-28 15:12:53 · 25 阅读 · 0 评论 -
67、客户端设置下副本编码的新技术
本文介绍了一种在客户端设置下实现副本编码的新技术,旨在提升数据存储的安全性与验证效率。文章首先回顾了可检索性证明、空间证明、复制存储证明及沙漏方案等前期工作,并分析了相关技术的相似性与并发研究进展。随后,基于陷门置换和随机预言机模型,提出了一种新的副本编码构造方案,定义了其正确性、编码长度和s-健全性,并通过一系列游戏化安全证明展示了该方案在理想置换模型下的安全性。最终,该技术为去中心化存储系统中的数据完整性验证提供了高效且安全的理论基础。原创 2025-09-27 14:18:16 · 24 阅读 · 0 评论 -
66、客户端设置下副本编码的新技术
本文介绍了一种新的客户端副本编码技术,深入探讨了其编码与解码算法、核心安全贡献及关键技术分析。通过发现前人方案在安全论证中的根本缺陷,提出并证明了DGO构造在正确参数下的安全性,创新性地采用‘先序列后切换’分析方法,并构建了仅依赖理想函数模型的新方案,提升了安全性和实用性。文章还分析了构造的轮数最优性,展示了其在云存储、物联网和区块链等领域的应用潜力。尽管面临计算复杂度高和存储需求大等挑战,未来可通过算法与存储优化推动其广泛应用。原创 2025-09-26 10:23:30 · 23 阅读 · 0 评论 -
65、计算受限世界中的透明纠错与副本编码新技术
本文探讨了计算受限环境下的透明纠错与副本编码新技术。在纠错方面,介绍了高效列表解码与伪唯一解码的命题与定理,结合有限独立性尾界和覆盖数界理论,提升了数据在存储与传输中的可靠性。在副本编码方面,分析了带客户端设置的证明复制系统,指出了DGO构造中原有安全论证的缺陷,并提出了在随机预言模型下可证安全的新构造。文章还总结了各项技术的优势与应用场景,展望了其在云计算、物联网等领域的应用前景。原创 2025-09-25 09:10:21 · 27 阅读 · 0 评论 -
64、计算受限世界中的透明纠错及相关技术研究
本文研究了在计算受限世界中的透明纠错机制及相关技术,提出了一种基于高效列表可解码编码的带种子编码构造方法 SC[C, Π, H]。通过引入 t-wise 几乎独立的置换家族和具有2-输入相关性难解性的哈希函数,证明了该构造在高概率下具有相对伪距离 δ,并继承了原始编码的高效列表可解码性,从而实现伪唯一解码。文章结合信息论、概率分析与复杂性理论,为高噪声环境下的可靠通信提供了理论基础与构造工具。原创 2025-09-24 16:06:12 · 32 阅读 · 0 评论 -
63、计算受限世界中的透明纠错码研究
本文研究了在计算受限通信信道中的透明纠错码设计,提出了一种无需秘密密钥、具有无状态编码器的高效伪唯一可解码码。通过引入伪唯一解码和伪距离的概念,在密码学假设或随机预言模型下,构建的码能够在大字母表上实现接近1 - p的码率,容忍高于传统Singleton界限制的错误比例。与依赖可信设置和有状态编码的先前工作相比,该方案更具实用性,适用于多用户通信和分布式存储等现代应用场景。研究为纠错码在现实受限环境下的性能优化提供了新的理论框架和实现路径。原创 2025-09-23 15:27:43 · 31 阅读 · 0 评论 -
62、几乎所有图和访问结构的秘密共享方案份额大小分析
本文系统分析了不同类型图(如稀疏图、非常密集图和几乎所有图)在秘密共享方案中的最大份额大小与总份额大小特性。基于多种构造方案,探讨了在不同参数设置下的性能表现,并给出了针对各类图结构的最优方案选择建议。研究涵盖了CDS协议、独立集大小、归一化份额大小等关键概念,结合理论分析与实际应用场景,为数据安全、分布式系统和云计算中的秘密共享机制提供了理论依据与优化方向。原创 2025-09-22 09:09:14 · 24 阅读 · 0 评论 -
61、几乎所有访问结构和图的份额大小分析
本文系统分析了几乎所有访问结构和图相关的秘密共享方案,涵盖份额大小的上下界、方案构建方法及其与鲁棒CDS协议的联系。通过引理和定理探讨了随机图的性质、切片访问结构族、线性与多线性方案的实现,并提出了(G,t)-秘密共享方案的具体构造与应用。结合云计算与分布式密钥管理场景,讨论了方案性能比较、优化方向及未来研究路径,包括新访问结构设计、技术融合与实际测试,为信息安全中的秘密共享提供了坚实的理论基础与实践指导。原创 2025-09-21 13:26:47 · 26 阅读 · 0 评论 -
60、几乎所有访问结构和图的份额大小分析
本文研究了几乎所有访问结构和图的秘密共享方案,分析了其份额大小的上下界,并提出了针对不同类型图(如随机图、稠密图、超图)的高效构造方法。结果表明,对于绝大多数结构,存在比最坏情况更优的份额效率方案,尤其在归一化份额大小方面取得了显著改进。文章还探讨了与鲁棒条件披露秘密(RCDS)协议的等价关系,并指出未来在份额优化和其他信息论安全原语复杂度方向的研究潜力。原创 2025-09-20 14:22:03 · 22 阅读 · 0 评论 -
59、几乎最优份额大小的鲁棒秘密共享及访问结构份额大小研究
本文深入研究了鲁棒秘密共享的构造与分析,提出了一种接近最优份额大小的方案,并系统探讨了不同访问结构下的秘密共享方案性能。通过对集合设定、概率分析和图模型的运用,证明了在高概率下可实现正确码字恢复。同时,全面综述了各类访问结构(如一般结构、图结构、禁止图等)的份额大小上下界,比较了线性、多线性及CDS协议相关方案的优势与局限。研究表明,几乎所有访问结构可通过$2^{O(\sqrt{n}\log n)}$甚至$n^{o(1)}$的份额大小实现,为未来降低$2^{o(n)}$目标提供了方向。文章还展望了优化图划分原创 2025-09-19 12:31:54 · 25 阅读 · 0 评论 -
58、具有近乎最优份额大小的鲁棒秘密共享
本文介绍了一种具有近乎最优份额大小的鲁棒秘密共享方案,通过图扩展、图算法(如Graph和GraphB)及消息认证码(MAC)等技术,在对抗急速对手的环境下实现高概率正确解码。方案利用列表可解码码与哈希验证保障鲁棒性,结合多项式评估MAC确保安全性,并通过Chernoff界分析失败概率。整体失败概率为O(log³n/n²),总份额大小为m + O(log⁴n + log m log³n),运行时间均为多项式级别,适用于大规模安全场景。原创 2025-09-18 14:53:07 · 28 阅读 · 0 评论 -
57、具有近乎最优份额大小的鲁棒秘密共享
本文介绍了一种具有近乎最优份额大小的鲁棒秘密共享方案,通过结合消息认证码(MAC)、一致性图和多轮通信重建协议,在存在主动和被动不诚实参与方的情况下仍能高效、安全地重建秘密。方案利用Filter、Find、GraphB、Cand等子例程,根据被动参与方数量动态选择重建策略,确保高概率正确性。该方法在分布式存储、云计算等场景中具有广泛应用潜力,并支持进一步的算法优化与多秘密共享拓展。原创 2025-09-17 16:31:06 · 30 阅读 · 0 评论 -
56、近乎最优份额大小的鲁棒秘密共享方案及对抗急速攻击者的安全性
本文提出了一种新的鲁棒秘密共享方案,能够在存在急速攻击者的情况下安全地共享和重建秘密。该方案具有近乎最优的份额大小开销,仅为O(log⁴n + logn logm),且运行时间为多项式,显著提升了实用性。通过引入随机邻域认证机制和基于一致性图的重建过程,方案在对抗n/3 ≤ t < n/2个错误份额时表现出色。与现有方案相比,本方案在保护参与方隐私和减少信息泄露方面具有优势,适用于鲁棒存储等敏感场景。原创 2025-09-16 14:05:02 · 35 阅读 · 0 评论 -
55、算术秘密共享的复杂性研究
本文深入研究了算术秘密共享的复杂性,重点探讨了线性秘密共享方案的转换方法、基于代数曲线的构造技术以及串联码的高效解码算法。通过定理与引理的形式,系统地介绍了从高维秘密空间到低维权重的方案转换、利用函数域和Reed-Solomon码构建具有强乘法性质的LSSS,并分析了不同解码策略在纠错能力与时间复杂度之间的权衡。同时,文章总结了各方案的应用场景与性能特点,提出了未来在算法优化、应用拓展和理论完善方面的研究方向,为安全多方计算与密码学应用提供了坚实的理论基础和技术支持。原创 2025-09-15 15:01:50 · 24 阅读 · 0 评论 -
54、算术秘密共享的复杂性研究
本文研究了算术秘密共享的复杂性,重点探讨了线性秘密共享方案(LSSS)及其级联技术,提出了实现准线性时间强乘法LSSS的方法。通过结合Reed-Solomon码与代数几何码,并引入反向乘法友好嵌入(RMFE)技术,实现了秘密空间的有效转换与通信复杂度的降低。文章还介绍了RMFE的多种构造方法及其在多参与者计算中的应用,为密码学协议的设计提供了高效且安全的新路径。原创 2025-09-14 16:52:01 · 23 阅读 · 0 评论 -
53、算术秘密共享复杂性与构造方法解析
本文探讨了算术秘密共享方案的构造方法,重点分析了具有强乘法性质的线性秘密共享方案(LSSS)在多参与方计算和密码学中的核心作用。针对传统基于代数几何码的构造方法效率低、密度不足的问题,提出了一种采用两级联结构与反向乘法友好嵌入(RMFE)的初等显式构造方法。该方法实现了拟线性时间复杂度和密度为1的渐近良好强乘法LSSS,显著提升了构造效率。尽管对手率较低且缺乏份额均匀性,但在理论应用中仍具广泛前景。研究还对比了不同构造方案的性能,并展望了其在MPC、两方密码学等领域的应用潜力。原创 2025-09-13 12:12:25 · 29 阅读 · 0 评论 -
52、预期时间密码学:安全引理与证明系统的具体分析
本文深入分析了预期时间密码学中的证明系统安全性,重点探讨了转录树、模拟器与提取器的协同机制,以及分叉引理在构建安全证明系统中的核心作用。通过引理与定理的形式化推导,给出了离散对数和防弹证明系统中稳健性的具体安全界限,并结合实际应用场景,展示了如何利用理论结果评估和设计安全的密码学协议。最后展望了该框架在量子安全与高效协议设计中的潜在扩展方向。原创 2025-09-12 11:21:59 · 25 阅读 · 0 评论 -
51、预期时间密码学:理论与应用解析
本文介绍了预期时间密码学的理论基础及其在密码分析中的应用。通过δ-有界性概念,建立了敌手设置不良标志概率的预期时间界限,并给出了定理证明。文章以随机预言机的抗碰撞性、伪随机性和通用群模型中的离散对数安全性为例,展示了该理论的实际应用。进一步地,将该框架应用于分叉引理,为Bulletproofs等证明系统提供了具体的安全性界限,采用谓词扩展模拟实现模块化安全分析,提升了密码系统可靠性评估的精确性与实用性。原创 2025-09-11 12:21:24 · 19 阅读 · 0 评论 -
50、预期时间密码学:理论与应用
本文系统探讨了预期时间密码学的理论基础与实际应用,涵盖δ-有界性的证明思路及其在随机预言机抗碰撞性、伪随机函数(PRF)安全性以及通用群模型中离散对数问题安全性分析中的应用。通过引入‘相同直到坏事件’的游戏框架和H-系数方法变体,提供了对预期时间对手行为的精细安全分析。进一步地,文章研究了分叉引理在知识证明系统稳健性分析中的作用,并以Bulletproofs为例给出了具体的安全边界。最后,展望了未来在边界优化、更多应用场景拓展及与计算假设结合的研究方向。原创 2025-09-10 16:15:05 · 27 阅读 · 0 评论 -
49、时间锁谜题与定时承诺的安全性及期望时间密码学
本文深入研究了时间锁谜题与定时承诺的安全性,分析了RSS方案的运行时间与实验序列,并构造了一个基于TPKE和NIZK的非可延展定时承诺(NITC)方案,证明了其CCA安全性和绑定性。同时,文章探讨了期望时间密码学,提出了针对期望时间对手的信息论安全界限,改进了随机预言机中碰撞查找的概率上界,并通过通用‘坏标志’分析方法实现了更紧密的具体安全性分析。此外,本文对Forking引理进行了模块化与具体化分析,应用于Bulletproofs系统,得出了其在期望时间下的稳健性具体界限,揭示了安全性与群参数及陈述复杂度原创 2025-09-09 09:38:19 · 32 阅读 · 0 评论 -
48、时间锁谜题与定时承诺的安全性研究
本文深入研究了时间锁谜题与定时承诺的安全性,探讨了代数算法与强代数算法之间的关系,并证明了在强代数群模型(SAGM)中RSW问题的难度与因式分解难题的关联。基于决策性RSW假设,构造了一个具有CCA安全性的时间释放公钥加密(TPKE)方案,结合NIZK证明系统的零知识性和模拟稳健性,实现了在标准模型下的安全保证。文章还定义了非交互式定时承诺(NITC)的安全模型,包括隐藏性与绑定性,并通过一系列归约实验分析了方案的安全性。最后展望了算法优化、安全性增强及实际应用拓展等未来研究方向。原创 2025-09-08 10:40:18 · 30 阅读 · 0 评论 -
47、时间锁谜题与定时承诺的安全性
本文研究了时间锁谜题与非交互式定时承诺(NITC)的安全性。在强代数群模型(SAGM)下,建立了RSW问题与整数分解问题之间的归约关系,为QRN群中顺序平方运算的难度提供了理论依据,并说明了Pietrzak可验证延迟函数的安全性。同时,提出了一种构建非可变形NITC的方法,通过引入定时公钥加密(TPKE),实现其CCA安全性,并给出了到非可变形NITC的通用转换。研究成果深化了对时间相关密码原语的安全性理解。原创 2025-09-07 09:11:24 · 26 阅读 · 0 评论 -
46、代数区分器与时间锁难题的安全性分析
本文围绕代数区分器与时间锁难题的安全性展开分析。首先在对称双线性群框架下定义了计算代数算法与完全代数算法,并证明了当多项式f独立于(\vec{r}, \vec{s})时,(\vec{r}, \vec{s}, f)-UBER问题可归约到q-DLOG问题,建立了二者在代数模型下的等价性。其次,针对时间锁难题,基于强代数群模型为顺序平方猜想提供了硬度证据,表明其安全性不弱于整数分解问题;同时扩展了定时承诺的安全定义,并提出了非可变形定时承诺及定时公钥加密的构造方案。研究深化了对双线性群中判定问题的理解,增强了时间原创 2025-09-06 09:55:13 · 20 阅读 · 0 评论 -
45、代数区分器:理论与应用
本文介绍了代数区分器的理论框架及其在密码学中的应用。通过扩展代数算法的定义,将计算与决策安全游戏统一到同一模型下,提出了适用于循环群、双线性群和多线性群的代数区分器概念。文章证明了DDH问题相对于代数敌手的难度可归约至DLog问题,并展示了该框架在密码协议安全性分析与密码原语设计中的实用性。同时探讨了未来在更复杂群结构、多模型结合及实际优化方向的研究前景。原创 2025-09-05 13:55:17 · 33 阅读 · 0 评论 -
44、代数区分器:从离散对数到决策假设的深入探索
本文提出了一种广义框架,用于在代数群模型中捕获代数区分器,并揭示了多种决策假设(如决策Diffie-Hellman、k-线性假设和Uber假设)与离散对数假设之间的代数等价性。该框架不仅统一处理各类决策问题,还为密码方案的设计与安全性分析提供了新的视角。通过将复杂决策假设归约到基础的离散对数问题,增强了对现有密码机制的信心,同时指出了代数技术的局限性和未来研究方向。原创 2025-09-04 14:38:38 · 21 阅读 · 0 评论 -
43、超线性时间 - 内存权衡与代数区分器在对称加密及密码学假设中的应用
本文探讨了超线性时间下的内存权衡与代数区分器在对称加密及密码学假设中的应用。首先通过k-XOR码的列表可解码性分析,建立了事件概率与猜测优势之间的界限,并利用矩界引理和马尔可夫不等式完成了关键引理的证明。随后介绍了代数群模型及其在处理计算问题上的优势,指出其在决策问题上的局限性。为弥补这一空白,提出了代数区分器的概念,揭示了多种重要决策假设(如决策Diffie-Hellman、多线性群线性假设、双线性群Uber假设)与离散对数假设之间的多项式等价性。最后展望了未来研究方向,包括深入分析代数区分器性质、设计新原创 2025-09-03 12:04:11 · 31 阅读 · 0 评论 -
42、对称加密的超线性时间 - 内存权衡
本文研究对称加密中的超线性时间-内存权衡问题,重点分析StE(Stream-to-Encryption)方案和k-XOR加密构造的安全性。通过引入信息论工具如条件熵、Guess函数以及随机变量的稠密性定义,建立了关键的安全边界不等式。针对k-XOR方案,利用k-XOR码的列表译码性质,证明了在S-有界敌手下其INDR安全性的上界,并给出了支持大规模查询的安全参数范围。文章最后总结了现有结果的适用场景与局限性,并展望了优化安全边界、设计新型加密方案及实际系统应用等未来研究方向。原创 2025-09-02 11:58:10 · 25 阅读 · 0 评论 -
41、对称加密的超线性时间 - 内存权衡:原理与应用
本文系统探讨了对称加密中的超线性时间-内存权衡问题,涵盖技术边界、攻击方法与安全性分析。重点研究了采样-然后-提取(StE)方案在PRF和PRP场景下的安全性,并结合信息论工具推导出针对k-XOR的不可区分性边界。文章还分析了不同攻击策略的成功条件,比较了多种方案的适用范围与优势,并对未来优化方向进行了展望,为理解内存受限环境下的对称加密安全提供了理论基础。原创 2025-09-01 14:11:11 · 25 阅读 · 0 评论 -
40、对称加密的超线性时间 - 内存权衡
本文研究了在攻击者内存受限的情况下,对称加密方案的时间-内存权衡问题。提出了两种基于多次调用块密码的构造方法:Sample-then-Extract 和 k-XOR。通过更紧密的混合论证、分解引理与香农熵分析,证明了Sample-then-Extract可实现超线性的安全边界 $q \Theta((N/S)^{k-1})$;而k-XOR构造利用XOR码的列表解码技术,达到 $q \Theta((N/S)^{k/2})$ 的安全性。两种方法均突破传统生日界限,在小内存攻击场景下显著提升加密容量。同时探讨了原创 2025-08-31 11:48:14 · 27 阅读 · 0 评论 -
39、函数求逆的时间/内存权衡下界
本文探讨了函数求逆问题中的时间与内存权衡下界,重点分析了加法建议求逆器和非自适应求逆器的理论性能。针对具有仿射解码器和仿射决策树解码器的非自适应求逆器,给出了成功概率与建议长度、查询次数、树深度等参数之间的关系,并推导出相应的下界结论。文章还比较了不同类型求逆器的性能特征,讨论了在实际应用中选择合适求逆器需考虑的计算资源、数据特性和实时性要求等因素,为理论分析与实际应用提供了综合视角。原创 2025-08-30 14:29:07 · 31 阅读 · 0 评论
分享