周期性脉冲检测新方法及其在摩擦故障诊断中的应用
1. 引言
旋转机械中故障部件之间的循环运动会在测量振动信号的共振带内激发周期性脉冲。由于故障引起的周期性脉冲中蕴含的周期性时变模式与特定故障元素相关,因此周期性脉冲检测是诊断和定位旋转机械故障的关键。
共振解调是一种常用且有效的脉冲检测方法,它通过对原始振动信号共振带内检测到的周期性脉冲的包络谱进行分析来提取故障特征。将基于谱峭度(SK)的指标与包络分析相结合,已成为实现共振解调的成功且广泛应用的策略。SK 指标用于定位周期性脉冲所在的频带,然后对该频带内的带通滤波信号进行包络分析以提取特征故障特征。然而,这些方法的诊断结果主要取决于共振带定位的准确性和滤波后脉冲的重建信噪比(SNR)。
现有的共振解调策略在各种情况下都能以较高的精度识别共振带,但周期性脉冲的重建问题在共振解调过程中受到的关注较少。目前的脉冲重建方法主要依赖带通滤波,如有限长单位冲激响应(FIR)滤波器和基于小波变换的滤波器。但带通滤波可能会导致重建 SNR 较低和波形失真,这是由于带内噪声干扰和边界效应。
本文提出了一种新的周期性脉冲检测方法,能够克服带通滤波遇到的困难。通过分析携带故障信息的周期性脉冲的数学模型,发现其调制形式与一组在频域具有均匀间隔的谐波等价。这不仅表明从调制模式和测量振动信号的频谱分布中提取的故障特征具有一致性,还为高精度重建周期性脉冲提供了新策略。
2. 理论基础
旋转机械故障激发的周期性脉冲通常可以建模为瞬时幅度(IA)和瞬时频率(IF)调制信号:
[s(t) = A(t)\cos\left[2\pi f_rt + 2\pi\int_{0}^{t}f_m(s)ds
订阅专栏 解锁全文
24

被折叠的 条评论
为什么被折叠?



