26、高可用性、基线、性能监控和灾难恢复规划

高可用性、基线、性能监控和灾难恢复规划

在当今数字化的时代,确保系统的高可用性、做好性能监控以及制定有效的灾难恢复计划对于企业的稳定运营至关重要。本文将深入探讨高可用性规划、灾难恢复规划的相关内容,为企业的系统运营提供全面的指导。

高可用性规划

在系统投入运营后,高可用性规划是确保业务持续稳定的关键。这不仅需要精确的设计,还需要投入大量的学习精力。

规划停机时间

企业应尽可能实现接近 100% 的正常运行时间,但这在现实中是不切实际且无法保证的。由于磁盘崩溃、电源或 UPS 故障、应用程序问题导致的系统崩溃等硬件或软件故障,系统可能会出现故障。因此,99.999% 的正常运行时间是一个合理的目标,在当今技术条件下是可以实现的。

可以通过以下公式计算年度正常运行时间百分比:
年度正常运行时间百分比 = (8760 - 年度总停机小时数) / 8760

例如,如果每月安排 8 小时的维护和停机时间(全年共 96 小时),那么年度正常运行时间百分比约为 98.9%。

停机时间可分为计划内和意外停机。意外停机的来源包括:
- 磁盘崩溃或故障
- 电源或 UPS 故障
- 应用程序问题导致的系统崩溃
- 其他硬件或软件故障

构建高可用性解决方案计划

在组织中采用高可用性设计时,需要在实施前考虑以下问题:
- 一个公司使用服务器访问接受订单和进行交易的应用程序。
- 该应用程序不仅为销售团队服务,还为三家进行企业对企业(B2B)交易的公司服务。据估计,在一小时内,峰值收入超过 250 万美元。 <

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方的例子。 简单的平方问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值